Answers to Selected Questions

See our Web page for worked solutions to three star (***) questions. The address is on the back cover.

Chapter 1

1 (a) luminous intensity, temperature; (b) ampere, second; (c) yard, year 2 (a) $1.08 \times 10^{9} \mathrm{~km} \mathrm{~h}^{-1}$; (b) $6.71 \times 10^{8} \mathrm{miles} / \mathrm{h} 3$ (a) 1030 cm ; (b) 0.0125 m ; (c) 11.20 m ; (d) 143.367 m ; (e) $1.8 \times 10^{-3} \mathrm{~m}$; (f) $1.4 \times 10^{-3} \mathrm{~m}^{2}$; (g) $4.8 \times 10^{-6} \mathrm{~m}^{3} 4$ (a) 172.72 cm ; (b) 10.72575 kg 5 (a) (i) is larger; (b) use scientific notation; (c) (i) $1 \times 10^{-1} \mathrm{~s}$, (ii) $1 \times 10^{-5} \mathrm{~s} 6$ (a) 5.52×10^{-4}; (b) 7.3×10^{7}; (c) 1.5×10^{6}; (d) $2.50 \times 10^{-4} 7$ (a) 2.64×10^{-7}; (b) $2.8125 \times 10^{10} 85 \times 10^{-28} \mathrm{~m}^{3} 9$ (a) 4; (b) 3 ; (c) 1 ; (d) 4; (e) 1; (f) 6 ; (g) 4 ; (h) 5 ; (i) 1 ; (j) 4 ; (k) 310 (a) 8.383×10^{1}; (b) 2.00×10^{1}; (c) 5 ; (d) 2.205×10^{4}; (e) 1×10^{2}; (f) 1.00010×10^{2}; (g) 1.999×10^{3}; (h) 2.222 2; (i) 4×10^{4}; (j) 5.070×10^{-2}; (k) $2.00 \times$ $10^{-7} 11$ (a) 2; (b) 3; (c) 3; (d) 412 (a) $4.20 \times 10^{2} \mathrm{~m}^{2}$; (b) $7.6 \times 10^{6} \mathrm{~m}^{2}$; (c) $7.2 \times 10^{1} \mathrm{~cm} \mathrm{~s}^{-1}$; (d) $3.71 \mathrm{~cm}^{2}$; (e) $4.0 \times 10^{-7} 13$ (a) 45.6 ; (b) 22.611 ; (c) $3.3 \times 10^{4} \mathrm{~m}$ or 0.00034 ; (d) 5.4×10^{-2} or 0.054 ; (e) 2.35×10^{6} or 2350000 ; (f) 3.5×10^{-2} or $0.035140 .2 \mathrm{~kg} \mathrm{~cm}^{-3} 15$ (a) $110 \mathrm{~cm}^{2}$; (b) $2 \mathrm{~cm}^{3}$; (c) 115.0 cm 16 (a) 10^{22}; (b) 10^{13}; (c) 10^{-10}; (d) 10^{-14}; (e) 10^{5}; (f) 10^{5}; (g) 10^{-6}; (h) $10^{-3} 17$ (a) 10^{3} or 10^{4} if converted to 0 M first; (b) 10^{12}; (c) 10^{3} or 10^{4} if converted to 0 M first $182200 \pm 300 \mathrm{~mm}^{3} 19$
(a) $25.5 \pm 0.5 \mathrm{~mm}, 174.5 \pm 0.5 \mathrm{~mm}$; (b) $25.5 \mathrm{~mm} \pm 1.96 \%, 174.5 \mathrm{~mm} \pm 0.29 \%$; (c) $200.0 \pm 1.0 \mathrm{~mm}$;
(d) $4450 \pm 100 \mathrm{~mm}^{2} 20223000 \pm 5000 \mathrm{~m}^{2}, 1980 \mathrm{~m} \pm 20 \mathrm{~m} 21$ (a) 27.6 ± 0.41; (b) 10.35 ± 0.0622
(a) 5.3%; (b) 5.3%; (c) 5.3%; relative error remains the same even as the speed changes 23330 ± 20 ohms 24 (a) 8.49 cm ; (b) $9.8 \mathrm{~mm} 253 \times 10^{8} \mathrm{~mm} 26$ (a) $4.00 \times 10^{7} \mathrm{~m}$; (b) $1.08 \times 10^{21} \mathrm{~m}^{3}$; (c) $1.08 \times$ $10^{12} \mathrm{~km}^{3} 2766 \mathrm{~m} \mathrm{~s}^{-1} 28$ (a) 3.55876×10^{3}; (b) 40.00 (or 4.000×10^{1}; (c) 7.9×10^{4}; (d) $2.00326 \times$ 10^{5}; (e) 1.994×10^{3}; (f) 20.009 (or 2.0009×10^{10}; (g) 5.00×10^{-2}; (h) 2.5×10^{6}; (i) 8×10^{-7}; (j) $5 \times$ $10^{6} 29$ (a) 3.4×10^{8}; (b) 1.5×10^{4}; (c) 4.0×10^{-2}; (d) 3.0×10^{9}; (e) 5.3×10^{-11}; (f) $6.4 \times 10^{15} 30$ (a) 10^{8}; (b) 10^{8}; (c) 10^{5}; (d) 10^{-4}; (e) 10^{-7}; (f) 10^{7}; (g) $10^{-6} 31$ (a) 3 ; (b) 4 ; (c) 2; (d) 332 (a) $2.40 \mathrm{~V} \pm 0.8 \%$; (b) $3.25 \mathrm{~A} \pm 2 \%$; (c) $25.4 \mathrm{~mm} \pm 2 \%$; (d) $0.0035 \mathrm{~T} \pm 3 \%$; (e) $325 \mathrm{~cm} \pm 3 \% 33$ (a) micrometer $\pm 0.005 \mathrm{~mm}$, vernier $\pm 0.05 \mathrm{~mm}$; (b) 28.4 mm length, 16.444 mm diameter; (c) radius $=$ $8.222 \pm 0.005 \mathrm{~mm}(\pm 0.0608 \%)$, length $=28.4 \pm 0.05 \mathrm{~mm}(\pm 0.176 \%)$; (d) $6030 \mathrm{~mm}^{3} \pm 0.2976 \%$ (\pm $17.9 \mathrm{~mm}^{3}$); (e) $9.35 \times 10^{-3} \mathrm{~g} \mathrm{~mm}^{-3} \pm 0.648 \% 35$ Micro means small wavelength; pico means smaller still 361.8×10^{12} furlongs/fortnight $371.1 \times 10^{-2} \pm 7 \times 10^{-4} \mathrm{~g} / \mathrm{mm} 383 \times 10^{23}$ fermi $39 \$ 690$ (to 2 SF) 403×10^{7} words 42 (b) 11 March; (c) $2 \mathrm{~h} 56 \mathrm{~min} 433.25 \times 10^{-6} \mathrm{~m} 44$ True, 8.33×10^{24} molecules in glass, 5.21×10^{21} glasses in ocean $455.97 \times 10^{10} \mathrm{~kg}$

Chapter 2

1 (a) 2 km N ; (b) 8 km ; (c) 6 km ; (d) 4.5 km E26 ${ }^{\circ} \mathrm{N} 260 \mathrm{~m}$ East 3 (a) $188 \mathrm{~cm}, 120 \mathrm{~cm}$; (b) 377 cm , 0 cm ; (c) $754 \mathrm{~cm}, 0 \mathrm{~cm}$; (d) $94 \mathrm{~cm}, 85 \mathrm{~cm} 4$ (a) $20 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $9.3 \mathrm{~m} \mathrm{~s}^{-1}\left(33 \mathrm{~km} \mathrm{~h}^{-1}\right.$); (c) 4200 m ; (d) 660 km ; (e) 20 s ; (f) 2 hours 50.26 s 64.8 s 7 (a) speed $3.89 \mathrm{~m} \mathrm{~s}^{-1}$; (b) velocity $2.78 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 53^{\circ} \mathrm{W}$ $828 \mathrm{~m} \mathrm{~s}^{-1} 9$ (b) $2-4 \mathrm{~s}, 5-6 \mathrm{~s}$; (c) $0-2 \mathrm{~s}, 4-5 \mathrm{~s}$; (d) same at $0-2 \mathrm{~s}, 5-6 \mathrm{~s}, 6-9 \mathrm{~s} 10$ (a)(i) $6 \mathrm{~m} \mathrm{~s}^{-1}$, (ii) 0 $\mathrm{m} \mathrm{s}^{-1}$, (iii) $4 \mathrm{~m} \mathrm{~s}^{-1}$, (iv) $0 \mathrm{~m} \mathrm{~s}^{-1}$, (v) $-5.0 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 0 ; (c) $\left.3.3 \mathrm{~m} \mathrm{~s}^{-1} 116 \mathrm{~m} \mathrm{~s}^{-2} 12 \mathrm{a}\right) 8 \mathrm{~m} \mathrm{~s}^{-1}, 4 \mathrm{~m} \mathrm{~s}^{-2}$; (b) $38 \mathrm{~m} \mathrm{~s}^{-1}, 1.0 \mathrm{~s}$; (c) $0 \mathrm{~m} \mathrm{~s}^{-1},-20 \mathrm{~m} \mathrm{~s}^{-1}$; (d) $-7 \mathrm{~m} \mathrm{~s}^{-1},-2 \mathrm{~m} \mathrm{~s}^{-2}$; (e) $-5.65 \mathrm{~m} \mathrm{~s}^{-1},-0.65 \mathrm{~m} \mathrm{~s}^{-1} 136.7 \mathrm{~m}$ $\mathrm{s}^{-2} 1469 \mathrm{~s} 150.54 \mathrm{~s} 164 \times 10^{-8} \mathrm{~s} 17$ (a) approx. $13 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $10 \mathrm{~m} \mathrm{~s}^{-1} 18$ (a) displacement 100 m , distance 200 m ; (b) $0.5 \mathrm{~m} \mathrm{~s}^{-2},-1 \mathrm{~m} \mathrm{~s}^{-2}, 1 \mathrm{~m} \mathrm{~s}^{-2}$; (d) $0 \mathrm{~s}, 30 \mathrm{~s}, 50 \mathrm{~s}$; (e) $0-20 \mathrm{~s}, 20-40 \mathrm{~s}, 40-50 \mathrm{~s}$; (f) nowhere 19 (a) 150 m ; (b) 350 m ; (c) $20-30 \mathrm{~s}, a=-1.5 \mathrm{~m} \mathrm{~s}^{-2}$; (d) $0 \mathrm{~s}, 30 \mathrm{~s}, 60 \mathrm{~s}$; (e) $20-30 \mathrm{~s}, 30-40 \mathrm{~s}$; (f) $40-50 \mathrm{~s} 20$ (b) $15.7 \mathrm{~km} 2111.25 \mathrm{~m}, 7.5 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $83 \mathrm{~m} \mathrm{~s}^{-1}, 34.7 \mathrm{~m} \mathrm{~s}^{-2}$; (c) $131.25 \mathrm{~m}, 7.5 \mathrm{~s}$; (d) $31.3 \mathrm{~m} \mathrm{~s}^{-1}, 14.9 \mathrm{~s}$; (e) $18 \mathrm{~m} \mathrm{~s}^{-1}, 4 \mathrm{~s}$; (f) $18.75 \mathrm{~m},-2 \mathrm{~m} \mathrm{~s}^{-2}$; (g) $-10 \mathrm{~m} \mathrm{~s}^{-1},-7.5 \mathrm{~m} \mathrm{~s}^{-2} 22$ (a) $6 \mathrm{~m} \mathrm{~s}^{-2}$; (b) $36.75 \mathrm{~m}^{23} 0.18 \mathrm{~m} \mathrm{~s}^{-2} 246.4 \times 10^{-4} \mathrm{~s} 2580 \mathrm{~m} 26$ (a) $-22.3 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 2.23 s 27 (a) 61.2 m ; (b) 3.5 s; (c) same, 3.5 s 28 (a) 4.9 s ; (b) $-44.5 \mathrm{~m} \mathrm{~s}^{-1} 29$ (a) $3.72 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $1.72 \mathrm{~m} \mathrm{~s}^{-1}$; (c) 15 cm higher 30 constant acceleration of $-10 \mathrm{~m} \mathrm{~s}^{-2} 31 \mathrm{~A} 33$ (b) slope at $C=57 \mathrm{~cm} \mathrm{~s}^{-1}$, slope at $F=140 \mathrm{~cm} \mathrm{~s}^{-1}$, same as calculated v; (d) area $=10 \mathrm{~cm}$, about same as displacement at G ; (e) slope $=1375 \mathrm{~cm} \mathrm{~s}^{-1}$ approx., about same as calculated acceleration 34 (c) $90 \mathrm{~cm} \mathrm{~s}^{-1}$; (e) same; (g) $1100 \mathrm{~cm} \mathrm{~s}^{-2}$; (i) same; (j) area = 6 cm , about same as table $6.1 \mathrm{~cm} 3520 \mathrm{~s}, 300 \mathrm{~m} 36 \mathrm{No}, \mathrm{v}=60 \mathrm{~km} \mathrm{~h}^{-1} 37$ (a) $50 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 33.3 km h^{-1}; (c) 10200 m ; (d) 715 m ; (e) 20 s ; (f) 55846 h or 6.15 y 38 (a) $18.77 \mathrm{~km} \mathrm{~h}^{-1}, 5.2 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 3940 s or 1 h 5 m 41 s 39 (a) 4023 m ; (b) $42.116 \mathrm{~m} \mathrm{~s}^{-1}$ or $151.6 \mathrm{~km} \mathrm{~h}^{-1} 400.55 \mathrm{~s} 41$ (a) 76 m north; (b) 9 $\mathrm{m} \mathrm{s}^{-1}$; (c) $2.8 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 4235 \mathrm{~km} \mathrm{~h}^{-1} 43$ (a) 15 m ; (b) 40 m ; (c) $0-1 \mathrm{~s}$; (d) $1-4 \mathrm{~s}$; (e) $0-1 \mathrm{~s}, 4-6 \mathrm{~s}$; (f) $-12.5 \mathrm{~m} \mathrm{~s}^{-1} 44$ (a) $17 \mathrm{~m} \mathrm{~s}^{-2}$; (b) $-82 \mathrm{~m} \mathrm{~s}^{-2}$; (c) $244 \mathrm{~m} \mathrm{~s}^{-1}$; (d) 6.9 s ; (e) $6.7 \times 10^{-3} \mathrm{~s}$; (f) $2.4 \times 10^{-3} \mathrm{~m}$ $\mathrm{s}^{-1} 45$ (a) $10.3 \mathrm{~m} \mathrm{~s}^{-2}$; (b) $18.5 \mathrm{~m} \mathrm{~s}^{-1}$; (c) 29 m ; (d) $20.5 \mathrm{~m} \mathrm{~s}^{-1} 46$ (a) 162.5 m ; (b) 392.5 m ; (c) $50-60$ s ; (d) $0 \mathrm{~s}, 37 \mathrm{~s}, 60 \mathrm{~s}$; (e) at no stage 47 (a) (i) 3.375 m , (ii) $4.5 \mathrm{~m} \mathrm{~s}^{-1}$; (b) (i) $286 \mathrm{~m} \mathrm{~s}^{-1}$, (ii) 204 m s^{-2}; (c) (i) 735 m , (ii) 17.3 s ; (d) (i) $40.3 \mathrm{~m} \mathrm{~s}^{-1}$, (ii) 13.1 s ; (e) (i) $17 \mathrm{~m} \mathrm{~s}^{-1}$, (ii) 20 s ; (f) (i) 44.5 m , (ii) $-9.3 \mathrm{~m} \mathrm{~s}^{-2}$; (g) (i) $-72 \mathrm{~m} \mathrm{~s}^{-1}$ (ii) $-0.19 \mathrm{~m} \mathrm{~s}^{-2} 48$ (a) 27.8 m ; (b) 5.5 s 49 (a) 10.2 m ; (b) 2.1 s $506.7 \mathrm{~m} \mathrm{~s}^{-2} 5164.9 \mathrm{~m} \mathrm{~s}^{-2} 520.021 \mathrm{~s} 53$ (a) $396 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 1.89 s 54 (a) 3061224 s (35.4 days); (b) $4.6 \times 10^{13} \mathrm{~m} 55$ (a) $-4 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 50 m ; (c) 8.5 s ; (d) $-20 \mathrm{~m} \mathrm{~s}^{-1}$; (e) $-14.1 \mathrm{~m} \mathrm{~s}^{-1} 56$ (a) (i) 2 s , (ii) 5 m ; (b) (i) $+45 \mathrm{~m} \mathrm{~s}^{-1}$, (ii) 9 s ; (c) (i) +27.5 s , (ii) +38 m 57 (a) $-22.6 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 2.6 s 59 (a) liberty; (b) none; (c) yes; (d) $40 \mathrm{~km} \mathrm{~h}^{-1}=11.1 \mathrm{~m} \mathrm{~s}^{-1}, 70 \mathrm{~km} \mathrm{~h}^{-1}=19.4 \mathrm{~m} \mathrm{~s}^{-1}$; (e) price, mass, fuel
consumption, warranty, accessories etc.; (f) not true - could depend on mass of car as well; (g) not supported - mass could have an effect 60 Chris is still faster $61-14.3 \mathrm{~m} \mathrm{~s}^{-2} 62$ (a) $23.87 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 75.3 s 63 (a) 0.04 s ; (b) 0.17 s ; (c) bottom is about $1 / 4$ of time 64 Four times as high 65 (a) -11.7 $\mathrm{m} \mathrm{s}^{-1} 66$ Acceleration most thrilling. Kitty: $46.9 \mathrm{~m} \mathrm{~s}^{-2}$, Eli: $805 \mathrm{~m} \mathrm{~s}^{-2} 67$ Both the same 68 (a) $\mathrm{s}_{1}-\mathrm{s}_{2}$ $=10-10 t_{1}$; (b) $\mathrm{v}_{1} / \mathrm{v}_{2}=\mathrm{t}_{1} /\left(\mathrm{t}_{1}-1\right) 69$ Case 1: $\mathrm{a}=15.4 \mathrm{~m} \mathrm{~s}^{-2}$, Case $\mathrm{B}: \mathrm{a}=11.8 \mathrm{~m} \mathrm{~s}^{-2}$. The Case 1 rider probably reached top speed before the 400 m line. The rider in Case 2 was travelling at $305 \mathrm{~km} \mathrm{~h}^{-1}$ at the finish line but reached this after 5 s and held the speed constant 70 At current mass, $\mathrm{a}=16.7 \mathrm{~m}$ s^{-2}; at heavier mass, $\mathrm{a}=15.7 \mathrm{~m} \mathrm{~s}^{-2} 71$ (a) 30 knots $=30$ nautical miles $/ \mathrm{h}$; (b) $54.9 \mathrm{~km} \mathrm{~h}^{-1} 7338.843$ 058 mph or 119.81382 mph . See our Web Page for the solution $74 \mathrm{~s} \propto \mathrm{t}^{2}$ (correct), $\mathrm{v} \propto \mathrm{s}$ (incorrect, should be $\mathrm{v}^{2} \propto \mathrm{~s}$); $75160 \mathrm{~s} ; 77$ at $0 \mathrm{~m}, 4 \mathrm{~m}, 16 \mathrm{~m}, 36 \mathrm{~m}, 64 \mathrm{~m}$

Chapter 3

1 (a) $12.2,0.70,35^{\circ}$; (b) $10.2,0.61,52^{\circ}$; (c) $17.9,0.45,27^{\circ}$; (d) $206,0.25,14^{\circ} 2$ (a) $36 \mathrm{~m}, \mathrm{~N} 56^{\circ} \mathrm{E}$; (b) $34 \mathrm{~m} \mathrm{~s}^{-1}, \mathrm{~W} 62^{\circ} \mathrm{S}$; (c) $22.3 \mathrm{~N}, \mathrm{~W} 71.6^{\circ} \mathrm{N} 3$ (a) $30 \mathrm{~N}, 53^{\circ}$ to horizontal; (b) $3.1 \times 10^{-3} \mathrm{~N}, \mathrm{E} 36^{\circ} \mathrm{N}$; (c) $440 \mathrm{~N}, \mathrm{E} 8.2^{\circ} \mathrm{N} 4$ Scalar: mass, height, time; Vector: velocity, acceleration, displacement $529 \mathrm{~N}, \mathrm{~S} 21.6^{\circ} \mathrm{W}$ 6 (a) $50 \mathrm{~m} \mathrm{~s}^{-1}$ North; (b) $60 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{E}$; (c) $43 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{E} 35.5^{\circ} \mathrm{S}$; (d) $53.8 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 22^{\circ} \mathrm{W} 7$ (a) $28 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{up}$; (b) $39 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 39.8^{\circ} \mathrm{E}$; (c) $28 \mathrm{~km} \mathrm{~h}^{-1}$ at E45 ${ }^{\circ} \mathrm{S} 840 \mathrm{~m} \mathrm{~s}^{-1}$ vertical $9 \boldsymbol{F}_{\mathrm{V}}=50 \mathrm{~N} ; \boldsymbol{F}_{\mathrm{H}}=87 \mathrm{~N} 10$ (a) $\boldsymbol{F}_{\mathrm{H}}=75 \mathrm{~N}$; (b) $\boldsymbol{F}_{\mathrm{V}}=27 \mathrm{~N} 11$ (a) $\boldsymbol{F}_{\mathrm{P}}=321 \mathrm{~N}$; (b) $\boldsymbol{F}_{\perp}=383 \mathrm{~N} 12$ (a) $8 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~W}$; (b) $8 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{E}$; (c) $4 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~W} 13$ Increases their speed relative to the air 147.06 h 15 (a) 0.5 h ; (b) 1.0 h 16 (a) $4.9 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 24^{\circ} \mathrm{E}$; (b) 44.4 m 17 (a) heads west; (b) 33.3 h ; (c) $18 \mathrm{~km} \mathrm{~h}^{-1} \mathrm{~W}$; (d) must head south; (e) 44.7 h ; (f) 13.4 km $\mathrm{h}^{-1} 18$ (a) treble W; (b) halve W 19 (a) A; (b) D; (c) B; (d) C 21 (a) $3.14 \mathrm{~cm}, 0.325 \mathrm{~m} / \mathrm{y}, 6.0 \mathrm{~m} / \mathrm{s}$; (b) $44 \mathrm{~cm}, 1.625 \mathrm{~m}, 48 \mathrm{~m}$; (c) $18.8 \mathrm{~cm}, 0.81 \mathrm{~m}, 18 \mathrm{~m} 22$ (a) 2 m west; (b) $7.1 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{E} 45^{\circ} \mathrm{S}$; (c) 5.8 m $\mathrm{s}^{-2} \mathrm{~N} 56^{\circ} \mathrm{W}$; (d) $9.2 \mathrm{~mW} 22.4^{\circ} \mathrm{N} 23$ (a) $23.5 \mathrm{~m}, \mathrm{~W} 12^{\circ} \mathrm{S}$; (b) $50 \mathrm{~m}, \mathrm{E} 33^{\circ} \mathrm{N}$; (c) $24.8 \mathrm{~m} \mathrm{~S} 48^{\circ} \mathrm{E}$; (d) 2 m north 24 (a) $175 \mathrm{~km} \mathrm{~h}^{-1}$ rebound; (b) $75 \mathrm{~km} \mathrm{~h}^{-1} \mathrm{~W} 37^{\circ} \mathrm{S}$; (c) $27.0 \mathrm{~m} \mathrm{~s}^{-1} 80^{\circ}$ to horizontal; (d) $451 \mathrm{~m} \mathrm{~s}^{-1}$ E53 ${ }^{\circ} \mathrm{N} 25$ (a) $100 \mathrm{~km} \mathrm{~N}, 0 \mathrm{~km} \mathrm{E;} \mathrm{(b)} \mathrm{north} \mathrm{component} 43 \mathrm{~m} \mathrm{~s}^{-1}$; east component $25 \mathrm{~m} \mathrm{~s}^{-1}$; (c) north 19 N , east 16 N 26 (a) $13 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 67^{\circ} \mathrm{E}$; (b) 60 s ; (c) $720 \mathrm{~m} 28 \mathrm{H} \propto I^{2} 29$ (a) $0-4 \mathrm{y}, 23.6 \mathrm{~cm} / \mathrm{y}$; (b) $17-18$ $\mathrm{y}, 52 \mathrm{~kg} / \mathrm{y}$; (c) sickness, $-27 \mathrm{~kg} / \mathrm{y}$; (d) height, $10.3 \mathrm{~cm} / \mathrm{y}$; mass $8.71 \mathrm{~kg} / \mathrm{y}$; (e) height, 242.5 cm ; (f) height 285 cm ; (g) birth height and mass not zero $3016 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~S}$; (b) $11.3 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~W} 45^{\circ} \mathrm{S}$; (c) $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ $\mathrm{W} 18^{\circ} \mathrm{S} 31$ (a) 87 N ; (b) $50 \mathrm{~N} 32502.5 \mathrm{~km} \mathrm{~h}^{-1} \mathrm{E} 5.7^{\circ} \mathrm{S} 33$ (a) $A_{\mathrm{P}}=A_{\mathrm{Q}} / 16$; (b) $V_{\mathrm{P}}=V_{\mathrm{Q}} / 64$; (c) $m_{\mathrm{P}}=$ $m_{0} / 64 ;$ (d) $\rho_{\mathrm{P}}=\rho_{Q} 34$ (a) $r_{1}=\sqrt[3]{ } 35 r_{2}$; (b) $r_{2}=15.3 \mathrm{~cm} 35$ (a) 600 N ; (b) $800 \mathrm{~N} 3638^{\circ} 370.098 \mathrm{~m}$, $100 \Omega 38 \mathrm{n}=3$ has sharper curve

Chapter 4

1 (a) $2.5 \mathrm{~N} \mathrm{N;} \mathrm{(b)} 101 \mathrm{~N}$ up; (c) $32 \mathrm{~N}, \mathrm{~S} 72^{\circ} \mathrm{W}$; (d) $16 \mathrm{~N}, \mathrm{~N} 22^{\circ} \mathrm{W} 2$ (a) balanced; (b) Unbalanced. $\boldsymbol{F}_{\mathrm{W}}$ causes book to accelerate downwards 3 (a) Slowly: string A breaks because string A has to support the weight of the mass plus the pulling force; (b) String B breaks because of the inertia of the mass. String A would not experience the pulling force immediately $50.123 \mathrm{~kg} 6 \mathrm{No}!V=1.76 \mathrm{~m}^{3}, m=424$ kg 7 (a) $2941 \mathrm{~N}, 2.94 \mathrm{~m} \mathrm{~s}^{-2}$; (b) $3.3 \mathrm{~m} \mathrm{~s}^{-1}, 1.67 \mathrm{~m} \mathrm{~s}^{-2}$; (c) $100 \mathrm{~kg}, 3 \mathrm{~s}$; (d) $5.5 \times 10^{-4} \mathrm{~N},-2.78 \times 10^{-3} \mathrm{~m}$ s^{-2}; (e) $68 \mathrm{~kg}, 8.8 \mathrm{~m} \mathrm{~s}^{-1} 89000 \mathrm{~N} 996000 \mathrm{~N} 10$ (a) false; (b) true; (c) true; (d) false 11 (b) $\boldsymbol{F} \propto \boldsymbol{a}$ 12 (b) $\boldsymbol{F} \propto \boldsymbol{a}$; (c) equal: $m=0.850 \mathrm{~kg} ;(\mathrm{d})$ Steeper and wouldn't pass through origin. Need more \boldsymbol{F} to produce the same acceleration; (e) Keep the hanging mass at 100 g and remove masses from trolley 13 (a) Racquet pushes back; (b) Road pushes up and forward on horse; (c) Ground pushes up and forward on horse and log; (d) Ground pushes up on beetle 14 (a) $\boldsymbol{F}_{\mathrm{N}}=-\boldsymbol{F}_{\mathrm{W}}=25 \mathrm{~N}$ up; (b) $\boldsymbol{F}_{\mathrm{N}}=5000 \mathrm{~N}$ but table would collapse 15 (a) $\boldsymbol{F}_{\mathrm{W}}$ on Saturn is 1.07 times as great; (b) Because of Earth's rotation and shape, the acceleration will be affected 16 (a) 33 N ; (b) Use an inertia balance (or springs): convert mass to an equivalent Earth weight $\boldsymbol{F}_{\mathrm{W}}=\mathrm{m} \times 9.8 \mathrm{~N} 17$ (a) 0; (b) 0; (c) 735 N ; (d) 665 N 18 (a) 246 N ; (b) 172 N ; (c) $5.73 \mathrm{~m} \mathrm{~s}^{-2} 19$ (a) $\mathrm{T}=4 \mathrm{~N}$; (b) $2 \mathrm{~m} \mathrm{~s}^{-2} 20$ Figure (a), (i) $5 \mathrm{~m} \mathrm{~s}^{-2}$; (ii) 15 N ; Figure (b), (i) $2.5 \mathrm{~m} \mathrm{~s}^{-2}$; (ii) 7.5 N 210.552235380 N 23 (a) 276 N ; (b) 585 N ; (c) 0.4724348 N $2556.7 \mathrm{~m} 2610.9 \mathrm{~m} 2713.1 \mathrm{~m} \mathrm{~s}^{-1} 28$ (a) 50 N ; (b) 38 N ; (c) 43.3 N ; (d) 66 N 290.47300 .1731 (a) 25 N north; (b) 10.1 N up; (c) $36 \mathrm{~N}, \mathrm{~S} 74^{\circ} \mathrm{W}$; (d) $1.8 \mathrm{~N}, \mathrm{~W} 56^{\circ} \mathrm{N} 32202.5 \mathrm{~g} 33$ (a) $1^{\text {st. }}$; (b) $3^{\text {rd }}$; (c) $2^{\text {nd }} ;(\mathrm{d}) 1^{\text {st }} 34$ (a) 35 (a) 15.36 N east; (b) 0.1 N ; (c) 25 N ; (d) 1.56 N ; (e) $3 \times 10^{5} \mathrm{~N} 36$ (a) 0.84 ; (b) same force (2100 N) 37 (a) $8.8 \times 10^{15} \mathrm{~m} \mathrm{~s}^{-2}$; (b) $1.8761 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} 38$ (a) The retarding (friction) force; (b) $1.5 \mathrm{~m} \mathrm{~s}^{-2}$; (c) $2 \mathrm{~N}, 3 \mathrm{~N}$; (d) 1 kg 393.2 N 40 (a) Sodium $0.97 \mathrm{~g} \mathrm{~cm}^{-3}$; potassium $0.86 \mathrm{~g} \mathrm{~cm}^{-3}$; (b) No 41 (a) $3^{\text {rd }}$ law - Throw your jacket off behind you to accelerate; (b) $2^{\text {nd }}$ law The faster you throw, the greater the acceleration; (c) $1^{\text {st }}$ law - To change direction, throw something to the side 42 Rolling and sliding friction is independent of area. Starting (static) friction varies with area 44 (b) 3.3 kg 45 (b) $0.25 \mathrm{~m} \mathrm{~s}^{-2}, 0.175 \mathrm{~m} \mathrm{~s}^{-2}, 0.11 \mathrm{~m} \mathrm{~s}^{-2}$; (d) $\mathrm{m} \propto 1 / a$; (e) 0.175 N in each case; (f) (i) $0.135 \mathrm{~m} \mathrm{~s}^{-2}$, (ii) 2.72 s 46 (a) combustion 60%, engine 21.4%, transmission 1.6%, accessories 2.2%, tyres 5.2%, air 4.9%, brakes 4.7%; (b) decrease i, ii, v, vi, vii; increase iii, iv 47 Steel plate drags along ground. Loss of control; dig up road 48 (a) 2.3 N ; (b) 0.2849 Wind force $2.1 \times 10^{-3} \mathrm{~N}$; tension $3.7 \times 10^{-3} \mathrm{~N} 50$ (a) $2 \mathrm{~m} \mathrm{~s}^{-2}$ upwards; (b) 22 s 51 For one person, $\boldsymbol{a}=2.72 \mathrm{~m} \mathrm{~s}^{-2}$; for two people, $\boldsymbol{a}=2.69 \mathrm{~m} \mathrm{~s}^{-2}$; one person would go faster $5259 \mathrm{~m} \mathrm{~s}^{-1}\left(212 \mathrm{~km} \mathrm{~h}^{-1}\right) 5393 \mathrm{~N} 5415 \mathrm{~m} \mathrm{~s}^{-1} 55$ $14 \mathrm{~m} \mathrm{~s}^{-1} 5615.3 \mathrm{~cm} 5770 \mathrm{~N}, 0.585816 .6 \mathrm{~m} \mathrm{~s}^{-1} 5915.3 \mathrm{~m} \mathrm{~s}^{-1} 61464 \mathrm{~N}$

Chapter 5

1 (a) -125 m ; (b) 125 m ; (c) $-56 \mathrm{~m} \mathrm{~s}^{-1}$ at 63° to horizontal 2 (a) 4.5 s ; (b) $-46 \mathrm{~m} \mathrm{~s}^{-1} 80^{\circ}$ to horizontal; (c) 36 m 3 (a) $u_{\mathrm{V}}=12.6 \mathrm{~m} \mathrm{~s}^{-1}, u_{\mathrm{H}}=27.2 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 7.9 m ; (c) 2.52 s ; (d) 68.5 m 4 (a) $1.5 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $20 \mathrm{~m} \mathrm{~s}^{-1}, 4.3^{\circ}$ (to horizontal); (c) 6.6 m ; (d) 2.3 s ; (e) 45.8 m 5 (a) 5.0 s ; (b) $47 \mathrm{~m} \mathrm{~s}^{-1}$, 72.7° (to horizontal); (c) $70 \mathrm{~m} 67.3 \mathrm{~m} \mathrm{~s}^{-1} 7$ (a) could clear the ferris wheel by 7.0 m ; (b) 68 m 8 (a) $12.5 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $23750 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} 9$ (a) $13.3 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 94.2 s 10 (a) $2.4 \times 10^{9} \mathrm{~m}$; (b) $1023 \mathrm{~m} \mathrm{~s}^{-1}$; (c) $2.7 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2}$; (d) $2 \times 10^{20} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} 11$ (a) Centripetal force is provided by the force of attraction between the water and the cloth. As long as this force is greater than $m v^{2} / r$, the water will remain on the clothes; (b) No, you need to increase speed; (c) Probably not - the force between the water and the clothes is too strong; (d) moves through the cloth $1227.8 \mathrm{~N} 137.74 \mathrm{~m} \mathrm{~s}^{-1} 14$ (a) 2550 N ; (b) $24 \mathrm{~m} \mathrm{~s}^{-2}$; (c) No; (d) 50 N ; (e) $77.4 \mathrm{~m} \mathrm{~s}^{-1} 1522.5 \mathrm{~N} 16$ (a) $0.52 \mathrm{rad} \mathrm{s}^{-1}$; (b) $0.1 \mathrm{~m} \mathrm{~s}^{-1} 17$ (a) $24 \mathrm{rad} \mathrm{s}^{-1}$; (b) $3.8 \mathrm{rev} / \mathrm{s}$ or 229 rpm 18 Rotation of the Earth; molten core not taken into account $195.48 \mathrm{~N} \mathrm{~m}^{-1} 20$ Chair 12.5 kg , astronaut 54.4 kg 21 (a) 1.644 s ; (b) 1.647 s 22 (a) $11.3 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 1.02 s ; (c) $3.3 \mathrm{~m} \mathrm{~s}^{-2} 23$ (a) into his hands; (b) fall behind him; (c) fall to side of him 24 (a) 31.25 m; (b) 37.5 m ; (c) $29.1 \mathrm{~m} \mathrm{~s}^{-1} 59^{\circ}$ to horizontal 25 (a) $4.33 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $17.8 \mathrm{~m} \mathrm{~s}^{-1} 76^{\circ}$ to horizontal 26 (a) $u_{\mathrm{H}}=17.2 \mathrm{~m} \mathrm{~s}^{-1}, u_{\mathrm{V}}=+24.6 \mathrm{~m} \mathrm{~s}^{-1}$; (b) +30.2 m ; (c) 4.92 s ; (d) $84.6 \mathrm{~m} \mathrm{~s}^{-1} 27$ (a) $+5.3 \mathrm{~m} \mathrm{~s}^{-1}$; (b) $28.2 \mathrm{~m} \mathrm{~s}^{-1}$ at 6° to horizontal; (c) +5.26 m ; (d) 2.1 s ; (e) 59.2 m 28 (a) $31.1 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 45°; (c) ${ }^{+24}$ m ; (d) 4.4 s 29 (a) $10 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 22500 N ; (c) $18.8 \mathrm{~s} 303^{\prime} \mathrm{g}^{\prime}$ or $30 \mathrm{~m} \mathrm{~s}^{-2} 319.0 \times 10^{22} \mathrm{~m} \mathrm{~s}^{-2}$; 32 (a) 57.3°; (b) 487°; (c) 1.57 rad ; (d) $0.52 \mathrm{rad} \mathrm{s}^{-1}$; (e) $15.9 \mathrm{rev} \mathrm{s}^{-1}$; (f) 6.28 m ; (g) $30 \mathrm{~m} \mathrm{~s}^{-1} 33$ (a) (i) 4.1 $\mathrm{m} \mathrm{s}^{-1}$, (ii) a_{c} is the same as the ferris wheel is rigid and it is assumed that v is constant; (b) at top 383 N , at bottom 917 N 3464.7 rpm 35 (a) $209 \mathrm{rad} \mathrm{s}^{-1}$; (b) $136 \mathrm{~m} \mathrm{~s}^{-1} 36$ (a) $10 \mathrm{~N} \mathrm{~m}^{-1}$; (b) 0.888 s ; (c) 1.12 Hz 37 (a) 1.346 s , (b) 1.347 s 38 (a) 0.42 m ; (b) $1.3 \mathrm{~m} \mathrm{~s}^{-2} 41$ (a) true; (b) true; (c) true 420.18 m 43 (a) 4.58 s ; (b) 45.8° to horizontal; (c) 150.7 m 44 He was 0.328 m off maximum (96.5%) 45 (a) $-233 \mathrm{~m} \mathrm{~s}^{-1}$ at angle of 53° to vertical; (b) 837 m ; (c) $263 \mathrm{~m} \mathrm{~s}^{-1}$ at 44.8° to horizontal 46 (a) $7.2 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 1225 N 47 (a) $18 \mathrm{~m} \mathrm{~s}^{-2}(1.8 \mathrm{~g})$; (b) will remain conscious; (c) 2240 N 492.2 s 50 (a) 80 m ; (b) 76°; (c) $12.8 \mathrm{~m}, 104 \mathrm{~m}$

Chapter 6

$21.05 \times 10^{4} \mathrm{~km} \mathrm{~s}^{-1} 33.4 \times 10^{4} \mathrm{~km} \mathrm{~s}^{-1} 49.8 \times 10^{9}$ y $51.01 \times 10^{-6} \mathrm{~m} 6$ (a) 1.53×10^{27} watts; (b) $3.9 \times$ $10^{10} 7$ Red has longer λ therefore lower temperature 8 False. Will give off radiation with $\lambda=1.06 \times$ $10^{-5} \mathrm{~m} 9$ False. Twice λ and twice energy but not twice rate $1010^{30} 11$ expansion 12 least favoured 13 last 10^{37} years 14 true 16 (a) $2.64 \times 10^{9} \mathrm{~s}$; (b) 83.5 years $174.51 \times 10^{12} \mathrm{~m} 184.34 \times 10^{6} \mathrm{~s}(50.2$ days) $193.54 \times 10^{22} \mathrm{~N} 202.2 \times 10^{16} \mathrm{~N} 21$ (a) $60 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 45000 N ; (c) 11.2 min 22 (a) 0.034 m s^{-2}; (b) 2.2 N ; (c) $465 \mathrm{~m} \mathrm{~s}^{-1} 23$ (a) 6100 N ; (b) $5590 \mathrm{~m} \mathrm{~s}^{-1}$; (c) 4 hours 24 (a) $\boldsymbol{F}_{\mathrm{g} 2}=1 / 4 \boldsymbol{F}_{\mathrm{g} 1}$; (b) $\boldsymbol{v}_{2}=$ $0.5 \mathrm{v}_{1}$; (c) $T_{2}=4 T_{1} 25$ (a) $7279 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 1.8 h 26 (a) $2.37 \mathrm{~km} \mathrm{~s}^{-1}$; (b) $8900 \mathrm{~m} \mathrm{~s}^{-1}$; (c) $59500 \mathrm{~m} \mathrm{~s}^{-1}$; (d) $618000 \mathrm{~m} \mathrm{~s}^{-1} 27$ (a) 86.8 N ; (b) $17.4 \mathrm{~m} \mathrm{~s}^{-2} 28$ (a) 7328 N ; (b) 25.4 N ; (c) 7302 N ; (d) 750 kg 29 $0.61 \mathrm{~m} \mathrm{~s}^{-2} 303$ Earth radii above surface 31 Graph shows $g \propto 1 / d^{2} 329.27 \times 10^{21} \mathrm{~km} 330.0427 \mathrm{c} 34$ $11.0 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} 35$ (a) age $\propto 1 / \mathrm{H}_{0} \therefore \mathrm{H}_{0}$ of 50 is younger; (b) 19.6 billion years 369.38×10^{-7} m 3732 days 38 (a) $7.4 \times 10^{-12} \mathrm{~N}$; (b) $3.56 \times 10^{22} \mathrm{~N}$; (c) $9 \times 10^{-56} \mathrm{~N} 398.2 \mathrm{~m} 40$ (a) $0.31 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 708 N ; (c) $10670 \mathrm{~s}(2.96 \mathrm{~h}) 41$ (a) 14.7 N ; (b) $9.53 \mathrm{~m} \mathrm{~s}^{-2}$; (c) nil $g=042$ (a) 6254 N ; (b) 6064 m s^{-1}; (c) 3.17 h 43 (a) 36176 N ; (b) $7810 \mathrm{~m} \mathrm{~s}^{-1}$; (c) $5277 \mathrm{~s}(1.5 \mathrm{~h}) 44640 \mathrm{~m} \mathrm{~s}^{-1} 45$ (a) $1.6 \mathrm{~m} \mathrm{~s}^{-2}$; (b) 1.37 s 46 (a) $9.8 \mathrm{~m} \mathrm{~s}^{-2}$; (b) $1.57 \mathrm{~m} \mathrm{~s}^{-2}$; (c) $0.61 \mathrm{~m} \mathrm{~s}^{-2}$; (d) $1.6 \mathrm{~m} \mathrm{~s}^{-2}$; (e) $275 \mathrm{~m} \mathrm{~s}^{-2} 47$ (c) graph shows $\boldsymbol{F} \propto 1 / d$ or $1 / d^{2}$; (d) confirms $\boldsymbol{F} \propto 1 / d^{2}$; (e) slope $=8.35 \times 10^{-12} \mathrm{~N} \mathrm{~m}^{2}$ hence $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2}$ $\mathrm{kg}^{-2} ;(\mathrm{f}) \mathrm{F}=9.2 \times 10^{-10} \mathrm{~N} 48$ (a) third; (b) be flat; (c) yes - elastic potential energy; (d) magnetic boots, velcro; (e) no, only that relying on gravity 496400 km 50 Some possibilities (a) half the mass but same radius; (b) double the radius, keep mass constant; (c) double the radius, keep mass constant 510.9452 Linear, therefore $r^{3} \propto T^{2} 53$ (a) $3.4 \times 10^{8} \mathrm{~m}$; (b) 0.90 of the distance to the moon; (c) No. In circular orbit you would experience free-fall and feel weightless 54 (a) $9.8011 \mathrm{~m} \mathrm{~s}^{-2}$ - No noticeable difference; (b) Same as on Earth's surface - no difference 55 (a) $9.2 \times 10^{11} \mathrm{~m} \mathrm{~s}^{-2}$; (b) 2.8 $\times 10^{8} \mathrm{~m} \mathrm{~s}^{-2} 56$ Spring clock not affected by gravity therefore it will keep time. Pendulum won't. They won't agree with each other 57 (a) $3.54 \times 10^{7} \mathrm{~m}$; (b) $410 \mathrm{~m} \mathrm{~s}^{-1}$; (c) $0.030 \mathrm{~m} \mathrm{~s}^{-2}$; (d) 1.79 N ; (e) (i) towards centre of Earth, (ii) perpendicular to Earth's axis through Brisbane, (iii) towards centre of Earth $584.9 \times 10^{10} \mathrm{~m} \mathrm{~s}^{-2}$ (can't escape, v>c) $596.5 \times 10^{23} \mathrm{~kg} 60$ (a) $3.8 \times 10^{-7} \mathrm{~m}$; (b) Procycon (bigger surface area); (c) Same

Chapter 7

$11282 \mathrm{~Pa} 212000 \mathrm{~Pa} 31.25 \times 10^{6} \mathrm{~Pa} 4$ (a) 1270 N ; (b) $5.3 \times 10^{5} \mathrm{~Pa}$; (c) 120 m 5 (a) $9690 \mathrm{~N} ; 6$ (a) 8.97 kg , (b) 89.7 N , (c) $78 \mathrm{~N} 70.6 \mathrm{~g} \mathrm{~cm}^{-3} 8$ (a) 0.8 N ; (b) $80 \mathrm{~g} 91670 \mathrm{~N} 103.8 \times 10^{6} \mathrm{~N} 11400 \mathrm{~kg}$ 12103.36 kPa 13307.3 kPa 1420635 Pa 15219600 Pa 16 (a) 11000 Pa ; (b) 112.3 kPa 17 (a) 401 200 Pa ; (b) 197 N ; (c) 269 m 18 (a) 25 N ; (b) $4.1 \mathrm{~g} \mathrm{~cm}^{-3} 19$ (a) 0.8 ; (b) $800 \mathrm{~kg} \mathrm{~m}^{-3} 20$ (a) 150 g ; (b) $10.05 \mathrm{~kg} \mathrm{~m}^{-3} 212.8022$ (a) 240 N ; (b) 11.52 N ; (c) $228.48 \mathrm{~N}(=22.8 \mathrm{~kg}) 230.02 \mathrm{~cm}^{-3}(20 \mathrm{~kg}$ m^{-3}) 245.5 cm 25 (a) $0.94 \mathrm{~g} \mathrm{~cm}^{-3}$; (b) 92% submerged 26 Fresh water less buoyant therefore floated at lower level 27 Glass bulb expands and floats higher. Real density would be a lower value 28 (a)
downward force becomes less therefore rises higher; (b) water level in pond will fall; (c) perhaps use ball bearing inside a test tube floating in a measuring cylinder 29 Equalise pressure on liquid inside can otherwise the low pressure stops liquid flowing out 301 . Weigh in a vacuum (use rigid container); 2. Alternatively weigh a rigid container in air, add the $1 \mathrm{~L} \mathrm{H}_{2}$ and reweigh 31 (a) 0.58; (b) rises 32 (a) $7.38 \times 10^{5} \mathrm{~N}$; (b) 74 tonnes 33 (a) ii; (b) ii; (c) ii; (d) all the same 34 Top and bottom holes 34.6 cm out from base; middle hole - 40 cm from base 35 No , the water level is the same. The ice cubes have bigger volume than liquid water but the cubes project over the top of the glass $36 \mathrm{H}_{2}$ balloon could only lift 1.14 times the load of the He balloon 37 Equal. The weight of water lost from glass equals weight of block 38 Cork will sink. $391087 \mathrm{~kg} \mathrm{~m}^{-3} 4019.4 \mathrm{kPa} 410.5 \mathrm{~m} 421.47 \mathrm{~g} \mathrm{~cm}^{-3}$ 43 Water level still higher. The water column is 13.6 times the height of the mercury column.

Chapter 8

10.92 m from 2.5 kg end $24.61 \times 10^{6} \mathrm{~m}$ from Earth 3 (a) $1.6 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$; (b) $30000 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$; (c) $1.8 \times$ $10^{29} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} 410 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ west $52.57 \mathrm{~s} 679200 \mathrm{Ns} 71.67 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~W} 80.1 \mathrm{~m} \mathrm{~s}^{-1}$ backward 96.25 m $\mathrm{s}^{-1} 107.2 \mathrm{~m} \mathrm{~s}^{-1} 114.1 \mathrm{~m} \mathrm{~s}^{-1}$ in same direction 12 (a) $227 \mathrm{~m} \mathrm{~s}^{-1}$; (b) mass of rifle 13 (a) 11020 N ; (b) $53 \mathrm{~m} \mathrm{~s}^{-1} 14$ (a) $1.81 \mathrm{~m} \mathrm{~s}^{-1}$ forward; (b) $-1.86 \mathrm{~m} \mathrm{~s}^{-1}$ (backwards) $1531.25 \mathrm{~kg} 1617.39 \mathrm{~m} \mathrm{~s}^{-1}$ at 135° to either neutron $1726.9 \mathrm{~m} \mathrm{~s}^{-1} S 42^{\circ} E 182.5 \mathrm{~m} \mathrm{~s}^{-1} E 37^{\circ} \mathrm{S} 193.53 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 38^{\circ} \mathrm{E} 2036 \mathrm{Nm} 21$ $5.6 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} 224 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} 230.89 \mathrm{~m}$ from 20 kg end 24 (a) $2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \mathrm{E}$; (b) 1.7 kg m $\mathrm{s}^{-1} \mathrm{~N} 35^{\circ} \mathrm{E}$; (c) $800 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N} 251 \times 10^{-22} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} 2666000 \mathrm{~N} \mathrm{~s} 27$ (a) 10.0 Ns ; (b) $45.5 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~N}^{28}$ $3.25 \mathrm{~cm} \mathrm{~s}^{-1} 299 \mathrm{~m} \mathrm{~s}^{-1}$ east $302.25 \mathrm{~m} \mathrm{~s}^{-1} 318.8 \times 10^{33} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} 324.6 \mathrm{~m} \mathrm{~s}^{-1}{\mathrm{E} 55^{\circ} \mathrm{S}}^{3} 33$ (a) air table minimises friction; (b) to the right; (c) blood pumping in opposite direction (from auricle to ventricle); (d) $0.025 \mathrm{~m} \mathrm{~s}^{-2}$; (e) $0.021 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} 34$ (a) zero; (b) $2.09 \times 10^{-20} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$; (c) $53470 \mathrm{~m} \mathrm{~s}^{-1}$ $3534 \mathrm{~m} \mathrm{~s}^{-1}$ at 11° below horizontal $363.5 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~S} 38^{\circ} \mathrm{E} 3713750 \mathrm{~m} \mathrm{~s}^{-1}$

Chapter 9

1 (a) 87.5 J ; (b) 170 J ; (c) 50000 J 2 (a) 18000 J ; (b) by the piano 3 (a) Horse A 8400 J , Horse B $6000 \mathrm{~J} ;$ (b) 14400 J 4 (a) 400 J ; (b) 40000 J ; (c) $280 \mathrm{~J} 5 \mathrm{v}_{\mathrm{A}}=0, v_{\mathrm{B}}=5 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{~W} 60.25 \mathrm{~m} \mathrm{~s}^{-1} 7$ (a) $6 \mathrm{~m} \mathrm{~s}^{-1}$; (b) 432 kJ 8 (a) 62.5 J ; (b) 62.5 J 93.3 m 1048200 J 113000 kW 12 (a) 600 W ; (b) 3420 W 13 (a) $E_{\mathrm{k} \text { (init) }}=110000 \mathrm{~J}, E_{\mathrm{k} \text { (ininal) }}=247500 \mathrm{~J}$; (b) 137500 J ; (c) 6.875 kW 14178571 N 15746 W $1613 \mathrm{~m} \mathrm{~s}^{-1} 17$ (a) 6384 J ; (b) $6.9 \mathrm{~m} \mathrm{~s}^{-1} 18150 \mathrm{~m} \mathrm{~s}^{-1} 1915.3 \mathrm{~J} 20$ (a) 4 J ; (b) $200 \mathrm{~N} \mathrm{~m}^{-1}$; (c) 2.89 J 210.04 m 22 (a) 30%; (b) heat; not lost, just transferred 23740 J 2448 J 251.92 J 26210000 J $27 \mathrm{E}_{\mathrm{k}(\text { (init })}=80 \mathrm{~J}, \mathrm{E}_{\mathrm{k}(\text { final })}=58.5 \mathrm{~J}$. Not elastic $28700 \mathrm{~J} 29557 \mathrm{~W} 3013 \mathrm{~m} \mathrm{~s}^{-1} 314.7 \mathrm{~J} 32$ (a) 0.36 J ; (b) $22 \mathrm{~N} \mathrm{~m}^{-1}$; (c) (i) 0.11 J , (ii) 0.44 J 33 (a) run-up 1, take-off 2, flight 3-6; (b) at beginning of run $E_{\mathrm{k}}=0$ and increases; (c) no, this is GPE of centre of mass; (e) no, lying on back has lower GPE 34 (a) $1.9 \mathrm{~m} \mathrm{~s}^{-1}$; (b) E_{K} initial and final is 31.7 J therefore elastic; (c) no, can show that $v_{1}=-3.9 \mathrm{~m} \mathrm{~s}^{-1}$ and $\boldsymbol{v}_{2}=+3.8 \mathrm{~m} \mathrm{~s}^{-1}$ and balls can't jump over each other $35913 \mathrm{~m} \mathrm{~s}^{-1} 36 \$ 55$ per second; $\$ 4.75$ million per day 37 (a) 0.28 km ; (b) $5.94 \times 10^{4} \mathrm{~W} .3810 .7 \mathrm{~J} 39254 \mathrm{~N} \mathrm{~m} 401.2 \mathrm{~kg} 416.0 \mathrm{~m} \mathrm{~s}^{-1}(21.7$ $\mathrm{km} \mathrm{h}^{-1}$) $425 \mathrm{~m} \mathrm{~s}^{-1} 4431.7$ tonnes 46 (a) $7 \mathrm{~m} \mathrm{~s}^{-2}$, friction; (b) 100000 N

Chapter 10

2 (a) neither; (b) steam 3 Thermal energy 4 (a) the same; (b) 100 mL 5 (a) 293 K ; (b) 123 K ; (c) 793 K ; (d) 201 K ; (e) not possible 6 (a) $-223^{\circ} \mathrm{C}$; (b) $5^{\circ} \mathrm{C}$; (c) $727^{\circ} \mathrm{C}$; (d) not possible $71.16 \times 10^{5} \mathrm{~J}$ $86.3 \times 10^{4} \mathrm{~J} 92.5 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$; methylated spirits $101.17 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1} 11112 \mathrm{~s} 122.1 \times 10^{3}$ $\mathrm{J} \mathrm{kg}^{-1} \mathrm{~K}^{-1} 131.6 \times 10^{5} \mathrm{~J} 141.2 \times 10^{5} \mathrm{~J} 158.3 \times 10^{5} \mathrm{~J} 1658 \mathrm{~min} 1731^{\circ} \mathrm{C} 212.5^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C}, 0.5^{\circ} \mathrm{C} 23$ (a) 563 K ; (b) 248 K ; (c) 332.2 K 24 (a) $-204^{\circ} \mathrm{C}$; (b) $1103^{\circ} \mathrm{C}$; (c) $72.6^{\circ} \mathrm{C} 2536.1^{\circ} \mathrm{C} 2784.3^{\circ} \mathrm{C} 28$ $64^{\circ} \mathrm{C} 3126 \mathrm{~g} 321.5 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1} 36$ (a) $80^{\circ} \mathrm{C}$; (b) $150^{\circ} \mathrm{C}$; (c) $1.3 \times 10^{5} \mathrm{~J}$; (d) $1.3 \times 10^{6} \mathrm{~J}$; (e) $1 \times$ $10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$; (f) $4.3 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} 3929.3^{\circ} \mathrm{C} 401.9 \mathrm{~cm} 4157 \mathrm{~g}$

Chapter 11

$1920 \mathrm{kPa} 250 \mathrm{~m}^{3} 350 \mathrm{~cm}^{3} 42.0 \mathrm{~kg} 535 \mathrm{~cm}^{3} 6180 \mathrm{~K} 78.8 \mathrm{~L} 876 \mathrm{~cm}^{3} 95028$ balloons 10330 kPa $1139.8 \mathrm{~h} 129.7 \times 10^{5} \mathrm{~Pa} 132.1 \times 10^{22}$ molecules 140.012 moles 15 (a) $1.0 \times 10^{7} \mathrm{~Pa}$; (b) 1.0×10^{7} Pa $164.8 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1} 171.2 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1} 18$ (a) $1: 1$; (b) $1: \sqrt{10} 191.6 \times 10^{5} \mathrm{~Pa} 200.90 \mathrm{~mm}$ for contraction, 0.75 mm for expansion 21 (a) $1.5 \times 10^{-2} \mathrm{~mm}$; (b) $8.5 \times 10^{-2} \mathrm{~mm}$; (c) rings $2250^{\circ} \mathrm{C} 23$ $4.8 \mathrm{~cm} 241.1 \mathrm{~L} 251.7 \mathrm{~L} 26497.8 \mathrm{~mL} 271.0 \mathrm{~m}^{3} 2899.5 \mathrm{~h} 29174 \mathrm{~cm} \mathrm{Hg} 305.2 \mathrm{~atm} 31$ (a) $1 / 6$ of original volume; (b) twice the original $325.9 \times 10^{-2} \mathrm{~m}^{3} 338 \times 10^{23}$ molecules $34175.5^{\circ} \mathrm{C} 354.9 \times$ 10^{22} molecules 364.8×10^{23} molecules $374.0 \times 10^{-17} \mathrm{~J} 386.1 \times 10^{-21} \mathrm{~J} 392.1 \times 10^{-22} \mathrm{~J} 401999 \mathrm{~m}$ $415.5 \mathrm{~mm} 4213.4 \mathrm{~g} \mathrm{~cm}^{-3} 4317.5 \times 10^{-6} \mathrm{~m}^{\circ} \mathrm{C}^{-1} 458.3 \times 10^{2} \mathrm{~J} 4630^{\circ} \mathrm{C} 47$ (a) $52^{\circ} \mathrm{C}$; (b) $61^{\circ} \mathrm{C} 48$ (a) 20 m ; (b) $V_{2}=3.2 V_{1} 491.1 \times 10^{5} \mathrm{~Pa} 509.5 \mathrm{~atm} 51{ }^{\circ} \mathrm{M}={ }^{\circ} \mathrm{C}+303$

Chapter 12

1 (b) steel, iron, brass, aluminium, and copper 3 (a) 1.6 kW ; (b) $5.8 \times 10^{6} \mathrm{~J} 41.3 \times 10^{5} \mathrm{~J} 7$ iron 11 85 W 124.1×10^{2} W $139.6 \times 10^{6} \mathrm{~J} 22$ (a) the can of Coke $362.7 \times 10^{6} \mathrm{~J}$

Chapter 13

$11.0 \mathrm{~m} \mathrm{~s}^{-1} 26 \times 10^{14} \mathrm{~Hz} 41.5 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}, 3.3 \times 10^{-3} \mathrm{~s} 5 \mathrm{~B}$ down, G down, P up, D up, and M up 8 (a) 20 cm ; (b) 0.60 s ; (c) 1.7 Hz 9 (a) 80 cm ; (b) 15 cm (c) 1.0 Hz 10 (a) 20 cm ; (b) 40 cm ; (c) 2.5 $\times 10^{2} \mathrm{~cm} \mathrm{~s}^{-1} 11$ Speed increases 13 (a) transverse 14 (a) transverse; (b) longitudinal 17 (a) 2.0 Hz , $0.50 \mathrm{~s}, 1.0 \mathrm{~m} \mathrm{~s}^{-1}$; (b) (i) frequency and wavelength, (ii) speed of the wave; (c) change the tension in the spring 18 (a) second is heavier than the first; (b) transmitted in phase 20 (a) 20 cm ; (b) 10 cm $210.30 \mathrm{~m} \mathrm{~s}^{-1} 221.1 \mathrm{~m} 23600 \mathrm{~m}$ to 10 m 24 (a) 0.62 m ; (b) 550 Hz ; (c) 2.6 m 25 (a) 4 cm ; (b) 20 cm; (c) 0.10 s ; (d) $2.0 \mathrm{~m} \mathrm{~s}^{-1} 26$ (a) P longitudinal, S transverse, L transverse; (b) 300 Hz 27 (a) A down, B down; (b) A to left, B to right 28 ' A ' heavier than ' B^{\prime}, ' C^{\prime} heavier than ' $\mathrm{B}^{\prime} 29$ (a) between A and E (b) A, C, E, G, I, K; (c) B, D, F, H, J; L (d) 4 m 300.40 s 31 (a) $\lambda=16 \mathrm{~cm}, f=0.10 \mathrm{~Hz}$, amplitude $=4 \mathrm{~cm}, v=1.6 \mathrm{~cm} \mathrm{~s}^{-1}$; (b) (i) H,C, (ii) A,E,F, (iii) B,D,G; (c) 4.0 cm above where it is now 32 (a) 4.0 m ; (b) $40 \mathrm{~m} \mathrm{~s}^{-1}$; (c) A and E, B and F 35 (b) at an undisturbed position; (c) 8.0 cm 36 (a) 4.0 cm ; (b) 2.5 Hz (c) 2.0 cm ; (d) $10 \mathrm{~cm} \mathrm{~s}^{-1} 37333 \mathrm{~m} \mathrm{~s}^{-1} 38 \lambda=\frac{4 l}{2 n-1}$ where $n=1,2,3, \ldots$ 3936 m 41 (a) B; (b) $1.0 \mathrm{~m} \mathrm{~s}^{-1}$

Chapter 14

$30.10 \mathrm{~m} \mathrm{~s}^{-1} 40.10 \mathrm{~m} \mathrm{~s}^{-1} 5$ (a) 0.05 s ; (b) 1.25 cm ; (c) 4 waves; (d) 0.625 cm 9 (a) different depths of water; (b) 5.0 Hz ; (c) 5.0 Hz ; (d) $15 \mathrm{~cm} \mathrm{~s}^{-1} 101.9 \mathrm{~cm} 11$ (a) Region (i); (b) 4:3; (c) 4:3; (d) 1:1; (e) refraction 12 (a) the dotted line; (b) 2.0 cm ; (c) (i) constructive, (ii) destructive, (iii) constructive, (iv) constructive 15 (a) $7.5 \mathrm{~cm} \mathrm{~s}^{-1}$; (b) 0.17 s ; (c) 1.25 cm ; (d) $6.0 \mathrm{~Hz} 165 \mathrm{~cm} \mathrm{~s}^{-1}, 4.2$ $\mathrm{Hz} 1862.5 \mathrm{~cm} \mathrm{~s}^{-1}, 25 \mathrm{~Hz} 19$ (a) 1.3 Hz ; (b) 4.5 cm 21 (a) they become circular; (b) no change; (c) no change; (d) no change 23 No change 25 (a) path difference $=6.0 \lambda$; (b) 2.5λ; (c) $n \lambda 26$ (a) the number of nodal lines will decrease; (b) increase in the number of nodal lines; (c) decrease in the number of nodal lines 28 (a) 1:1; (b) $6: 1029 v_{\mathrm{d}}=80 \mathrm{~cm} \mathrm{~s}^{-1}, v_{\mathrm{s}}=60 \mathrm{~cm} \mathrm{~s}^{-1} 31 \mathrm{~A} 32 \mathrm{C} 33 \mathrm{~A}-$ nodal line, B - antinodal line, C — nodal line 34 (a) 10 Hz ; (b) 2.0 cm ; (d) 8; (e) 'a' is doubled, ' b^{\prime} is halved, ' d ' is doubled 35 (a) destructive; (b) destructive; (c) the second order antinodal line; (d) the fourth order nodal line 36 (a) $20 \mathrm{~cm} \mathrm{~s}^{-1}$; (b) $20 \mathrm{~cm} \mathrm{~s}^{-1}$; (c) 2.0 cm ; (d) destructive interference; (e) the first nodal line; (f) point X lies on the first antinodal line 37 (b) Constructive interference occurs when the path difference $=(n-1 / 2) \lambda$, and destructive when the path difference $=n \lambda$

Chapter 15

1 (a) 2.4 cm ; (b) 6.5 cm ; (c) 1.6 cm 2700 nm 3 (a) first-order $=0.53 \mathrm{~cm}$, second-order $=1.06 \mathrm{~cm}$;
(b) first-order $=0.79 \mathrm{~cm}$, second-order $=1.58 \mathrm{~cm}$; (e) blue $=440 \mathrm{~nm}$, red $=660 \mathrm{~nm} 45.8 \mathrm{~cm} 5$ (a) 1.3 cm ; (b) 2.6 cm ; (c) 2.6 cm ; (d) 1.3 cm ; (e) central maximum is twice as wide as others 60.20 mm 7 (a) 22.5 seconds of arc; (b) 32.5 seconds of arc; (c) Blue light has greater resolving power 8 (a) 2.6 m ; (b) 3.9 m 9 (a) 23.6°; (b) 36.9°; (c) $510 \lambda=532 \mathrm{~nm}$, green 11 (a) Infra red 1080 nm or Green 540 nm ; (b) Infra red 720 nm or Blue 432 nm 12 Blue $432 \mathrm{~nm} 13500 \mathrm{~nm} 147.0 \times 10^{-5} \mathrm{~m} 15$ $1.1 \times 10^{-5} \mathrm{~m} 18$ (a) 8.7 mm ; (b) $5.2 \mathrm{~cm} 192.0 \times 10^{-6} \mathrm{~m} 20$ (a) 1.5 cm ; (b) 5.1 mm 21667 nm 22 (a) 0.125 m from P; (b) double crest, maximum 23 (b) 1.4 cm ; (c) 11.3 mm 24 Green light (568 nm) 25480 nm 2614127 (a) (i) $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$, (ii) $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$, (iii) $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$; (b) (i) 4.8×10^{14} Hz , (ii) $6.4 \times 10^{14} \mathrm{~Hz}$, (iii) $3.0 \times 10^{17} \mathrm{~Hz}$; (c) (i) $4.8 \times 10^{14} \mathrm{~Hz}$, (ii) $6.4 \times 10^{14} \mathrm{~Hz}$, (iii) $3.0 \times 10^{17} \mathrm{~Hz}$ 292.6 m 3075 km 32 (a) 1.5 cm ; (b) (i) 2.25 cm , (ii) 1.5 cm ; (c) 4.5 cm 33 (a) radio waves; (b) microwaves; (c) infra-red waves; (d) X-rays, gamma rays; (e) visible light; (f) X-rays; (g) X-rays; (h) microwaves; (i) ultraviolet light 34 FM radio 36 (a) (i) 0λ, (ii) $1 / 2 \lambda$ (iii) $2 \lambda_{\text {; (b) (i) destructive, }}$ ((ii) constructive; (c) $440 \mathrm{~nm} 390.80^{\circ} 40338 \mathrm{~nm} 41674 \mathrm{~nm} 42$ Green (580 nm) Indigo-Violet (414 nm) $434.0 \times 10^{-5} \mathrm{~m} 45$ all false

Chapter 16

$41 \mathrm{~Hz} \rightarrow 7 \mathrm{~Hz} 58.8 \times 10^{-3} \mathrm{~s}, 0.34 \mathrm{~m} 6$ Pipe by $0.021 \mathrm{~s} 7336 \mathrm{~m} \mathrm{~s}^{-1} 8170 \mathrm{~m} 9255 \mathrm{~m}$ from you 10 Minimums 1 m apart $11333 \mathrm{~m} \mathrm{~s}^{-1} 13$ (b) fish are 725 m below 14103 kHz 16 (b) $297 \mathrm{~Hz} 17 f_{0}=$ 340 Hz , third harmonic $=1020 \mathrm{~Hz} 18 f_{0}=1133 \mathrm{~Hz}, 2 f_{0}=2267 \mathrm{~Hz}, 3 f_{0}=3399 \mathrm{~Hz}, 4 f_{0}=4532 \mathrm{~Hz} 19$ (a) 2550 Hz ; (b) 5100 Hz ; (c) 850 Hz 21 (a) 3.0 Hz ; (b) 4.0 Hz ; (c) 6.0 Hz 2250 dB 2347 dB 24 $3.16 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2} 26$ (a) 1264 Hz ; (b) 1142 Hz 27 (a) 1109 Hz ; (b) 911 Hz ; (c) same, 1000 Hz 28 In the direction of motion 29 (a) $2.4 \times 10^{3} \mathrm{~Hz}$; (b) $336 \mathrm{~m} \mathrm{~s}^{-1} 303.4 \mathrm{~km} 320.22 \mathrm{~m} 33840 \mathrm{~m} 342550$ Hz 35425 Hz 36 (a) 340 Hz ; (b) 0.50 m 37 (a) 1.16 m (b) second overtone $=884 \mathrm{~Hz}$, third overtone $=1179 \mathrm{~Hz} 38343 \mathrm{~m} \mathrm{~s}^{-1} 39$ (b) $336 \mathrm{~m} \mathrm{~s}^{-1} 40$ (d) $200 \mathrm{~Hz}, 350 \mathrm{~Hz}, 400 \mathrm{~Hz} 41$ (a) 1063 Hz ; (b) (i) 16 cm from the top, (ii) 4 cm from the top, (iii) 2.7 cm from the top 43439 Hz 44248 Hz 45437 Hz $46484 \mathrm{~Hz} 478 \mathrm{~km} \mathrm{~h}^{-1} 48990 \mathrm{~m}$ away perpendicular to line of microphones; and 24 m from microphone 1 towards microphone 2

Chapter 17

3 (a) 50°; (b) 70°; (c) $65^{\circ} 44 \mathrm{~m} \mathrm{~s}^{-1} 7$ (a) Convex mirror; (b) concave mirror 823 cm in front of the mirror 9 (a) 3.3 cm behind the mirror; (b) virtual, upright, smaller; (c) 1.32 cm 10 (a) 60 cm in
front of the mirror; (b) $3: 1$; (c) 3.0 cm ; (d) real, inverted, magnified 11 (b) 11 cm behind the mirror; (c) 0.88 cm 12 (b) 2.4 cm behind the mirror; (c) 1.2 cm high 13 (a) $u=30 \mathrm{~cm}, v=15 \mathrm{~cm}$; (b) $u=15$ $\mathrm{cm}, v=30 \mathrm{~cm} 164.0 \mathrm{~m} 17$ Minimum length $=80 \mathrm{~cm} 19$ (a) diverging; (b) diverging; (c) parallel; (d) converging; (e) Parallel; (f) Diverging; (g) parallel; (h) none reflected 20 (b) real, inverted, magnified; (c) 23 cm in front of the mirror; (d) 2.3 cm 214 cm 22 (b) virtual image; (c) 8.6 cm behind the mirror 24 (a) 13.3 cm ; (b) 10 cm ; (c) real; (d) inverted $3060^{\circ} 31$ (a) concave; (b) at the focus; (c) use a parabolic dish 35 A, B, D 36 (a) concave dish; (b) at the focus 37 (c) 2; (d) 22.5 cm ; (e) 15 cm 3815 cm 394 cm in front of the convex mirror 40 (a) $u=10 \mathrm{~cm}, v=20 \mathrm{~cm}$ behind the mirror; (b) $u=30 \mathrm{~cm}, v=60 \mathrm{~cm}$ in front of the mirror

Chapter 18

2 (a) 1.15; (b) 1.67 ; (c) impossible 3 (a) $2.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$; (b) $1.25 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$; (c) $2.3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} 4$ 1.815 (a) 1.46 (b) 28.7° (c) 64.1° (d) undefined 61.227 (b) $\sin \mathrm{i} / \sin \mathrm{r}=1.52$; (c) 1.52 ; (d) 32° 81.149 (a) 26.5°; (b) 24.2°; (c) $38^{\circ} \mathrm{C}$; (d) 1.0910 (a) 1.41 ; (b) 1.14 ; (c) 1.25 ; (d) $1.3711 \theta_{\mathrm{w}}=$ $28^{\circ}, \theta_{g}=23^{\circ} 12$ (b), (d) 13 True depth $=0.9975 \mathrm{~m} 14$ (a) no; (b) yes; (c) no; (d) yes; (e) yes; (f) yes $1558.8^{\circ} 161.218$ (a) 60.5°; (b) $1.76 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} 1946.4^{\circ} 20$ (a) towards; (b) away; (c) towards; (d) away; (e) away; (f) away 21 (a) 33.6°; (b) $2.05 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} 232.6 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} 24$ (a) 1.25; (b) 1.67; (c) 1.1 ; (d) impossible 26 (a) (i) $1.69 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$, (ii) $2.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$, (iii) $1.43 \times$ $10^{8} \mathrm{~m} \mathrm{~s}^{-1}$, (iv) $2.11 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$; (b) (iii) Highest refractive index 27 (a) 1.1; (b) $43.3^{\circ} 28422 \mathrm{~nm}$ 29 (a) $66.5 \mathrm{~cm} 3088.9^{\circ} 3186.6 \mathrm{~m}^{2} 321.52330 .67^{\circ} 34$ (a) 1.19; (b) 1.09; (c) 1.41; (d) impossible $3729.6^{\circ} 391.43 \mathrm{~cm} 40$ Ray passes into prism unrefracted, then retracts at 30.5° into water from upper surface of prism and strikes water surface at 14.5°, refracting into air at 19.5° 41 R, 0 refract out of right side at different angles; Y, G, B, I, V undergo total internal reflection and head as a single beam towards bottom 42 A spectrum diagonally across page: violet (top left) to red (bottom right) 42 (a) Colour, don't use plastic, different R.I, degradable plastic

Chapter 19

4 Real inverted image 60 cm from the lens 5 The image is 7.1 m on the object side of the lens 6 (a) Virtual, upright magnified (b) $v=-6.67 \mathrm{~cm}$; (c) $H_{\mathrm{i}}=4 \mathrm{~cm} 7$ (a) $v=-7.5 \mathrm{~cm}$; (b) $H_{\mathrm{i}}=1.25 \mathrm{~cm}$; (c) virtual, upright, diminished 8 (a) virtual, upright, larger, 20 cm on the same side as the object; (b) virtual, upright, smaller 4.5 cm on the same side as the object; (c) real, inverted, same size, 50 cm on the other side 9 (a) $H M=2$; (b) $u=15 \mathrm{~cm} 10$ (a) $M=0.25$; (b) $u=40 \mathrm{~cm}$; (c) $f=8.0 \mathrm{~cm}$; (d) real, inverted, smaller $11 f=103.7 \mathrm{~cm} 12$ (a) -4 D ; (b) -0.5 D ; (c) 5 D ; (d) 1 D 13 (a) concave lens $f=20$ cm; (b) convex lens $f=10 \mathrm{~cm}$; (c) convex lens $f=4.0 \mathrm{~cm}$; (d) concave lens $f=2.0 \mathrm{~cm} 14$ (a) convex; (b) convex; (c) concave; (d) concave; (e) convex 15 (a) (ii) 20 cm ; (b) (ii) 2.25 cm 16 (a) just inside the focal length; (b) $H_{\mathrm{i}}=4 \mathrm{~mm} 17$ (a) $v=48 \mathrm{~cm}$ on the opposite side; (b) $H_{\mathrm{i}}=3.7 \mathrm{~cm}$; (c) real, inverted, smaller; (d) 16.7 cm on the same side as the object 18 (a) $v=-10 \mathrm{~cm}$; (b) $m=0.50$; (c) 5.0 cm 19 (a) convex; (b) virtual, upright, larger; (c) -33.3 cm ; (d) 3.3 mm 20 (a) 50 mm ; (b) 56 mm 22 Ray 2, 424 (b) 25 cm ; (c) 38 cm ; 25 (a) convex; (b) inside the focal length 265.4 cm to the right of the concave lens 27 (a) two images (b) 64.3 cm to the right of the lens, 23.7 cm to the right of the lens $28 f=20 \mathrm{~cm} 29 f=35.5 \mathrm{~cm} 30 f=43.8 \mathrm{~cm} 31$ (a) $u=16 \mathrm{~cm}$ from lens; (b) $u=24$ cm $32 f=20 \mathrm{~cm} 33 f=40 \mathrm{~cm}$

Chapter 20

5 (a) closer (b) f_{11} and larger 6 (b) 2.5 cm (c) F4 7 (a) 12 cm ; (b) 17.1 cm ; (c) cannot be done 8 (a) $40,410 \mathrm{~cm}$; (b) $2.0 \mathrm{~m}, 205 \mathrm{~cm}$; (c) $5 \mathrm{~cm}, 305 \mathrm{~cm}$; (d) $1.98 \mathrm{~m}, 9910$ (a) 1.25 ; (b) 12.5 ; (c) 0.25; (d) 5.016 (a) cornea and lens; (b) ciliary muscles; (c) iris; (d) rods 2040 cm 21 (a) 1.0 cm; (b) 0.50 cm ; (c) 2.5 cm 23 (a) convex; (b) concave; (c) convex; (d) convex; (e) convex 26 (a) minimum distance $=30 \mathrm{~cm}$; (b) maximum distance $=2.55 \mathrm{~m}$; (c) $1.95 \mathrm{~m}^{2} 27 \mathrm{c}, \mathrm{d}, \mathrm{f} 316.67 \mathrm{~cm}$ from the lens 3350 cm

Chapter 21

1 (a) glass positive, silk negative; (b) rubber negative, wool positive; (c) gold negative, cat fur positive; (c) $44.8 \times 10^{-19} \mathrm{C}$, the atom has lost three electrons 5 each $+2 \mu \mathrm{C} 6 \mathrm{~A}=+4 \mu \mathrm{C}, \mathrm{B}=+1 \mu \mathrm{C} 7$ 2.3 N repulsive 8 (a) repulsive; (b) $1.5 \times 10^{-4} \mathrm{~N}$; (c) $2.4 \times 10^{-3} \mathrm{~N}$; (d) $6.0 \times 10^{-4} \mathrm{~N} 94.1 \times 10^{-1} \mathrm{~N}$ up the page $111.35 \times 10^{6} \mathrm{~N} \mathrm{C}^{-1}$ radially inwards $124.1 \times 10^{5} \mathrm{~V} 13$ (a) 24 V ; (b) $1.3 \times 10^{-4} \mathrm{~J} 14$ (a) 1.0 $\times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}$; (b) $6.0 \times 10^{-2} \mathrm{~N}$ upwards; (c) $1.2 \times 10^{-3} \mathrm{~J} 16$ Perspex positive, silk negative 17 Excess electrons conducted through the body to earth $183.1 \times 10^{-6} \mathrm{C}$ positive $195.0 \times 10^{7} \mathrm{~N} \mathrm{C}^{-1} 201.4 \times$ $10^{-17} \mathrm{C} 217 \times 10^{-9} \mathrm{C} 221.8 \times 10^{6} \mathrm{~V} 234.6 \times 10^{4} \mathrm{~V} 24$ (a) $1.2 \times 10^{5} \mathrm{~V} \mathrm{~m}^{-1}$; (b) $9.6 \times 10^{-13} \mathrm{~N}$ upwards $253000 \mathrm{eV}, 4.8 \times 10^{-16} \mathrm{~J}, 3.2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} 26$ (a) $1.6 \times 10^{-17} \mathrm{~N}$ down page; (b) $1.67 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-2}$; (c) 8.3 $\times 10^{-6} \mathrm{~s}$; (d) $5.7 \times 10^{-3} \mathrm{~m}$; (e) towards the bottom right 27 (a) point A; (b) zero; (c) 200 V ; (d) $9.0 \times$ $10^{-7} \mathrm{~J}$; (e) $1.8 \times 10^{-6} \mathrm{~J} 32$ (a) $2.1 \times 10^{-9} \mathrm{~s}$; (b) $9.7 \times 10^{-4} \mathrm{~m}$ upwards; (c) $1.06 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$, angle $=5^{\circ}$

Chapter 22

$25.3 \mathrm{~V} 33.1 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1} 41.5 \mathrm{~V} 5$ (a) 0.6 A ; (b) $2.16 \times 10^{3} \mathrm{C} 630 \mathrm{mV}$, it will not be electrocuted 8 (a) 1.08Ω; (b) 0.72Ω; (c) assuming that conductor B is copper, $R=0.8 \Omega 10$ Voltmeter 11.8 V , ammeter 0.39 A 110.96 A , current through each 0.48 A 12 Current through $\mathrm{R}_{5}=1 \mathrm{~A}$, voltage across R_{5} is 5 V voltage drop across resistors $1-4$ is 5 V and current through each is 0.5 A 13144 W ; 14 (a) 1152Ω; (b) 58Ω; (c) $580 \Omega 152.2 \times 10^{6} \mathrm{~J} 16$ (a) 8.9Ω; (b) energy is 18.9 kWh 17 (a) 4 A ; (b) 0.25 A ; (c) $1.1 \mathrm{~A} 182.2 \times 10^{2} \mathrm{~J} 198.0 \times 10^{-7} \Omega \mathrm{~m} 21$ series 22 The 60 W bulb has a comparatively lower resistance and thus a thicker diameter filament, assuming an equivalent length to the 25 W bulb 23 (a) $R_{\text {tot }}=10 \Omega, A=1.2 \mathrm{~A}, V=7.2 \mathrm{~V}$; (b) $R_{\text {tot }}=15 \Omega, A_{1}=1.33 \mathrm{~A}, A_{2}=0.66 \mathrm{~A}, V_{1}=6.6 \mathrm{~V}$; (c) $R_{\text {tot }}=$ $20 \Omega, A_{1}=0.9 \mathrm{~A}, V=9 \mathrm{~V} 25 \mathrm{Z}=4 \mathrm{~A}, \mathrm{Y}=8 \mathrm{~A}, \mathrm{X}=16 \mathrm{~A}, \mathrm{~V}=64 \mathrm{~V}, \mathrm{EMF}=160 \mathrm{~V} 26$ (a) 4 A ; (b) 60Ω 27 (a) 20 bulbs in series; (b) 20 W ; (c) 12 V ; (d) $83 \mathrm{~mA}, R=145 \Omega 30$ (a) A is the ohmic resistor; (b) 14.5 V ; (c) 15 V ; (d) the same 355.1 hours $361.25 \Omega 37$ (a) zero potential difference between the opposite ends of the bridge; (c) $R_{\mathrm{x}}=1.0 \mathrm{k} \Omega 38$ (a) 92Ω; (b) 45 V across the 60Ω resistor $39 R$ $=232 \Omega$ or 43Ω

Chapter 23

2 Adjust vertical amplifier to a smaller value in volts/division and decrease the timebase period $3 V_{\text {PP }}$ $=44 \mathrm{~V} 4 P=30 \mathrm{~W}$, Yellow-purple-brown 6 Plastic film or greencaps, electrolytics, ceramic capacitors $7 \tau=12 \mu \mathrm{~s} 9$ time $=12.5 \mathrm{~ms} ; I=2.4 \mathrm{~A} 11 V_{\mathrm{P}}=10.6 \mathrm{~V} 13$ (a) 20 V ; (b) 40 V ; (c) 0.0 V ; (d) 14.1 V ; (e) 25 Hz 14 (a) 5.6 A ; (b) 3.96 A ; (c) $60 \mathrm{~Hz} 1675 \mathrm{~V}, I=13.3 \mathrm{~mA} 17 V_{1}=4.1 \mathrm{~V}, V_{2}=5.9 \mathrm{~V}, I=72$ mA $20 \tau=47 \mathrm{~s}$, full charge after $141 \mathrm{~s}, W=1.9 \times 10^{-2} \mathrm{~J} 223.2 \mathrm{~W} 23 V_{o}=6.1 \mathrm{~V}, V_{\mathrm{av}}=3.9 \mathrm{~V} 24$ Decreasing the load resistance increases the current drawn from the supply, with an increase in ripple voltage or hum 29 (a) $\tau=2 \times 10^{-2} \mathrm{~s}$; (b) $\tau=1 \times 10^{-2} \mathrm{~s} 30$ (a) $I=I_{\mathrm{L}}+I_{\mathrm{Z}}$; (b) $V_{\text {in }}=V_{\mathrm{R}}+V_{\mathrm{Z}}$;
(c) $R=\frac{V_{\text {in }}-V_{\mathrm{Z}}}{I_{\mathrm{L}}+I_{\mathrm{Z}}}$
(d) $P=57 \mathrm{~mW}$; (e) $I_{\mathrm{L}}=4 \mathrm{~mA}$ (f) $R=470 \Omega$ preferred 31 (a) $1.4 \times 10^{-9} \mathrm{C}$ and
$5.6 \times 10^{-9} \mathrm{C}$; (b) $2.8 \times 10^{2} \mathrm{~V}$; (c) $2.4 \times 10^{-8} \mathrm{~J}$

Chapter 24

$3 I_{\mathrm{C}}=3 \mathrm{~mA}, I_{\mathrm{E}}=3.015 \mathrm{~mA} 6 I_{\mathrm{B}}=25 \mu \mathrm{~A}, V_{\mathrm{C}}=1.4 \mathrm{~V} 7 \beta=1009 Z_{\mathrm{in}}=10 \mathrm{k} \Omega 11$ Square wave 13 Binary levels are two state; $0 \mathrm{~N}=$ high (5 V), OFF = low (0 V) $15 f_{0}=200 \mathrm{~Hz} 16$ phototransistor input transducer, loudspeaker - output transducer $20 \beta=86$, or $\beta=11622 A_{\mathrm{V}}=9425$ (a) $I_{\mathrm{C}}=100$ $\mathrm{mA} ;(\mathrm{b}) \mathrm{R}_{\mathrm{C}}=30 \Omega$; (c) $\mathrm{R}_{\mathrm{B}}=5.2 \mathrm{k} \Omega$ nearest preferred 26 (a) $R_{\mathrm{B}}=280 \Omega$; (b) 0.4 mW in $\mathrm{R}_{\mathrm{B}}, 0.13 \mathrm{~W}$ in R_{L}; (c) 5.4 V ; (d) 0.7 V 27 (b) $I_{\mathrm{B}}=7.15 \mu \mathrm{~A}, I_{\mathrm{C}}=0.86 \mathrm{~mA}, V_{\mathrm{CE}}=1.4 \mathrm{~V}$

Chapter 25

1 A substance that can be magnetised. Yes it does! 2 A magnetic pole is permanent, an induced magnetic pole is temporary 3 An experiment based on repulsion 4 The way in which they are influenced by magnets 5 Development of new magnetic materials with greater strength 7 Magnetic flux is the total number of field lines passing through an area, whereas magnetic flux density is the magnetic flux per unit area 82.2 T 10 Declination is the angle between the Earth's magnetic axis and it's geographical axis. Inclination or dip is the angle of the field lines to the horizontal 11 (a) $7.3 \times$ $10^{-6} \mathrm{~T}$; (b) $3.3 \times 10^{-5} \mathrm{~T}$, direction for both depends on position around the wire being considered. Use the screw rule 120.75 T 1375 A current from A to $\mathrm{B} 144 \times 10^{-5} \mathrm{~T}$ up, $1.6 \times 10^{-4} \mathrm{~T}$ down $151.4 \times$ $10^{-4} \mathrm{~N}$ to the right 160.05 N up the page 17 (a) down the page; (b) to the left 18 (a) side AB downwards, side DC upwards; (b) to allow coil to freely rotate; (c) 0.18 N 19 (a) $3.15 \times 10^{-14} \mathrm{~N}$; (b) acceleration $=5.6 \times 10^{12} \mathrm{~m} \mathrm{~s}^{-2} 20$ (a) X and Y positive, Z negative; (b) particle Y has the greatest mass as it's radius of curvature is greatest $231.1 \times 10^{-5} \mathrm{~Wb} 24$ (a) A: N, B: S; (b) A; N, B: S; (c) both A and B not magnetised 25 Force is attractive, $1.2 \times 10^{-4} \mathrm{~N} \mathrm{~m}^{-1} 262.0 \times 10^{-2} \mathrm{~N}$ downwards 27 7.5 A, towards the east 281.3 mT into page 31 Field strength is too small to affect the watch

33 (a) Magnetic field directed into the page; (b) $3.2 \times 10^{-17} \mathrm{~J}$; (c) $m=\frac{q B^{2} r^{2}}{2 \mathrm{~V}}$; (d) $1.0 \times 10^{-30} \mathrm{~kg}$
34 Current direction is Y to $X, 0.98 \mathrm{~A} 35$ (a) 67 A ; (b) 5.4 N m 36 (a) ${ }_{2}^{4} \mathrm{He}^{2+}: ~ b,{ }_{2}^{4} \mathrm{He}^{+}: \mathrm{d}_{2}{ }_{2}^{3} \mathrm{He}^{2+}: \mathrm{a}$, ${ }_{2}^{3} \mathrm{He}^{+}$: c; (b) in order left to right, ${ }_{80}^{200} \mathrm{Hg}^{2+},{ }_{80}^{204} \mathrm{Hg}^{2+},{ }_{80}^{200} \mathrm{Hg}^{+},{ }_{80}^{204} \mathrm{Hg}^{+},{ }_{160}^{400} \mathrm{Hg}_{2}^{+},{ }_{160}^{404} \mathrm{Hg}_{2}^{+},{ }_{160}^{408} \mathrm{Hg}_{2}^{+}$

Chapter 26

2 (a) 0.24 V ; (b) 0.2 V 3 (a) $V_{\mathrm{AB}}=V_{\mathrm{DC}}=0 \mathrm{~V}, V_{\mathrm{AD}}=V_{\mathrm{BC}}=0.06 \mathrm{~V}$; (b) no current will flow as V_{AD} opposes $V_{B C} 6 \mathrm{~A}$ very large output AC voltage could be induced even for a small input voltage $81600 \mu \mathrm{~V} 9$ Step-up, turns ratio is 5210140 V peak 11 Losses due to lower voltage distribution 12 (a) appliances used to heat water and cook breakfast meals; (b) use of artificial heating in homes; (c) appliances used to cook evening meals as well as general heating 13 At 11 kV , power loss is 3.6×10^{5} W , at $66 \mathrm{kV}, 9.9 \times 10^{3} \mathrm{~W}$ only 142.4 V 1590 V 16267 V 17 Because without it, the law of conservation of energy would be violated 1953 turns 20 Because a changing magnetic flux is needed for induction 23 The magnet will, at first, be attracted downwards into the right solenoid and then pushed upwards again $24240 \mathrm{~V}_{\mathrm{RMS}}$ @ 50 Hz 26 Factors: input AC voltage, turns ratio, laminations;
energy appears as heat 2740 mA 28 (b) 12 mV 29 Induced current will flow from right to left through the ammeter and then the solenoid 30 (a) 5.1 kW ; (b) 218 V at hospital, hence could not use satisfactorily; (c) voltage would drop considerably; (d) voltage loss about 1.0 V only 3110 Hz .

Chapter 27

2 (a) $8080 \mathrm{~V} \mathrm{~m}^{-1}$; (b) $1.274 \times 10^{-18} \mathrm{C}$; (c) $8 \mathrm{e}^{-} 5$ electrometer 6 filament 9 False-neutron not discovered until 1930. $12{ }_{6}^{12} \mathrm{C},{ }_{6}^{14} \mathrm{C} 13{ }_{2}^{3} \mathrm{He}(1 \mathrm{n}, 2 \mathrm{p}, 2 \mathrm{e}) ;{ }_{2}^{4} \mathrm{He}(2 \mathrm{n}, 2 \mathrm{p}, 2 \mathrm{e}) 14$ Neutrons are neutral and aren't repelled by electron cloud or positive nucleus 15 protons, neutrons: (a) 1,1; (b) 6,6; (c) 8,9; (d) 11,12; (e) 16,16; (f) 47,60; (g) 53,74; (h) 92,146 1628.10317 (a) $8.48 \mathrm{MeV}, 2.83$ $\mathrm{MeV} /$ nucleon; (b) $7.71 \mathrm{MeV}, 2.57 \mathrm{MeV} /$ nucleon; (c) 104.4 MeV , 7.46 MeV; (d) $127.6 \mathrm{MeV}, 7.97 \mathrm{MeV} 18$ 341.324 MeV 19 (a) $5.5 \times 10^{3} \mathrm{~V} \mathrm{~m}^{-1}$; (b) $1.92 \times 10^{-18} \mathrm{C}, 12 \mathrm{e}^{-} 20$ (a) 82,125 ; (b) 17,18 ; (c) 7,8 ; (d) 85, 130; (e) 83, 13322 (a) ${ }_{20}^{40} \mathrm{Ca},{ }_{20}^{42} \mathrm{Ca},{ }_{20}^{43} \mathrm{Ca},{ }_{20}^{45} \mathrm{Ca}$; (b) (i) 20, (ii) 40; (i) 22, (ii) 42; (i) 23, (ii) 43; (i) 25, (ii) 4523 (a) (i) 0.320802 u, (ii) 1.915055 u , (iii) 1.034425 u , (iv) 0.042131 u ; (b) $8.5 \mathrm{MeV} /$ nucleon, $7.58 \mathrm{MeV} /$ nucleon, $8.5 \mathrm{MeV} /$ nucleon, $5.6 \mathrm{MeV} /$ nucleon 25 (a) (i) to produce e^{-}, (ii) anode is +ve, (b) (i) more e produced, (ii) faster acceleration $262.44 \times 10^{-15} \mathrm{~kg} 272228 \mathrm{D} 29 \mathrm{~F}$

Chapter 28

1 The air is ionised and the electroscope attracts opposite charge from the air 3 (a) 88, 138; (b) 1, 0; (c) 93,1464 (a) radium; (b) hydrogen; (c) Bk ; (d) Sr 5 (a) ${ }_{84}^{214} \mathrm{Po}$; (b) ${ }_{92}^{239} \mathrm{U}$; (c) ${ }_{2}^{4} \mathrm{He}$; (d) ${ }_{21}^{45} \mathrm{Sc}$; (e) ${ }_{28}^{58} \mathrm{Ni}$; (f) ${ }_{92}^{230} \mathrm{U} 6$ (a) ${ }_{16}^{32} \mathrm{~S}$; (b) ${ }_{-1}^{0} \mathrm{e}$; (c) ${ }_{10}^{22} \mathrm{Ne}$; (d) ${ }_{-1}^{0} \mathrm{e}$; (e) ${ }_{0}^{1 \mathrm{n}} 7$ (a) ${ }_{83}^{210} \mathrm{Bi}$; (b) ${ }_{88}^{214} \mathrm{Bi}$; (c) ${ }_{26}^{222} \mathrm{Rn}$; (d) ${ }_{18}^{210} \mathrm{Po} 8$ (a) ${ }_{6}^{14} \mathrm{C} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{7}^{14} \mathrm{~N}$; (b) ${ }_{11}^{24} \mathrm{Na} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{12}^{24} \mathrm{Mg}$ (c) ${ }_{15}^{32} \mathrm{P} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{16}^{32} \mathrm{~S} 9$ (a) ${ }_{11}^{23} \mathrm{Na} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{10}^{22} \mathrm{Ne}$; (b) ${ }_{9}^{18} \mathrm{~F} \rightarrow{ }_{+1}^{0} \mathrm{e}$ $+{ }_{8}^{18} \mathrm{O}$; (c) ${ }_{19}^{19} \mathrm{Ne} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{9}^{19} \mathrm{~F}(\mathrm{~d}){ }_{82}^{199} \mathrm{~Pb} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{81}^{199 \mathrm{Tl}} 10$ (a) $0.02235 \mathrm{~s}^{-1}, 1.34 \mathrm{~min}^{-1}$; (b) (i) 5 g , (ii) 1.25 g , (iii) $3 \times 10^{-5} \mathrm{~g} 11$ (a) 89.7 min (b) 34.46 min 12 (a) $0.0693 \mathrm{~min}^{-1}$ (or $0.00115 \mathrm{~s}^{-1}$) (b) $8 \times$ $10^{13} \mathrm{~Bq}$ (c) (i) $1.245 \times 10^{12} \mathrm{~Bq}$ (ii) 1165 Bq (d) 7.7 hours 132.62 minutes 14 (b) $4.38 \times 10^{-3} \mathrm{~min}^{-1}$; (c) 158 minutes 1511400 y 16686 years old, hence 1302 AD ; previously believed to be genuine and hence should have a date of about 32 AD when Jesus died 17 (a) $2.03 \times 10^{-11} \mathrm{~J}$; (b) $5.21 \times 10^{13} \mathrm{~J} / \mathrm{kg}$ 18 (a) $2.82 \times 10^{-12} \mathrm{~J}$; (b) $5.24 \times 10^{-13} \mathrm{~J}$; (c) $3.02 \times 10^{-12} \mathrm{~J}$. Most energy comes from reaction (c) 24 (a) U; (b) H; (c) Ra; (d) P 25 (a) ${ }_{12}^{24} \mathrm{Mg}$; (b) ${ }_{10}^{22} \mathrm{Ne}$; (c) ${ }_{82}^{20} \mathrm{~Pb}$; (d) ${ }_{16}^{32} \mathrm{~S} 26$ (a) ${ }_{-1}^{0} \mathrm{e}$; (b) ${ }_{86}^{222} \mathrm{Rn} 27$ (a) ${ }_{\mathrm{a}}^{\mathrm{b} X}$ $\rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{\mathrm{a}-2}^{\mathrm{b}-4 \mathrm{Y}}$ (b) ${ }_{\mathrm{a}-2}^{\mathrm{b}-2 \mathrm{Y}} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{\mathrm{a}-1}^{\mathrm{b}-4 \mathrm{Z}} 28$ (a) ${ }_{0}^{1} \mathrm{n}$; (b) ${ }_{11}^{24 \mathrm{Na} \text {; (c) }{ }_{12}^{25} \mathrm{Mg} \text {; (d) }{ }_{19}^{39} \mathrm{~K} \text {; (e) }{ }_{13}^{27} \mathrm{Al} \text {; (f) }{ }_{4}^{9} \mathrm{Be} 29{ }_{38}^{96} \mathrm{Sr} \rightarrow}$ $4_{-1}^{0} \mathrm{e}+{ }_{42}^{96} \mathrm{Mo} 30$ (a) ${ }_{6}^{14} \mathrm{C} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }^{1}{ }_{7} \mathrm{~N}$; (b) $0.000381 \mathrm{u}=6.32 \times 10^{-31} \mathrm{~kg}$; (c) $5.69 \times 10^{-14} \mathrm{~J} 31$ (a) ${ }^{169} \mathrm{Im}$ $\rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{50}^{116} \mathrm{Sn}$; (b) $5.297 \times 10^{-30} \mathrm{~kg}$; (c) $4.767 \times 10^{-13} \mathrm{~J} 32$ No, need something that exchanges carbon dioxide 3334670 y 3413.8 million years 35 (a) 353.5 GBq ; (b) 9.95 half-lives, 36 (a) 148 days; (b) 285 days 37 (a) 0.0859 days $^{-1}$; (b) 5.0×10^{16} atoms; (c) 126 days 38 emit as $\beta 401.00$ min 42 (a) 49.6 y ; (b) 1543 (a) $4.123 \times 10^{-12} \mathrm{~J}$; (b) $6.16 \times 10^{14} \mathrm{~J} 44$ (i) $8.145 \times 10^{13} \mathrm{~J} / \mathrm{kg}$; (ii) 5.72×10^{14} J / kg, reaction (ii) produces more energy per kilogram; (b) reaction is fission, ii is fusion $45 \mathrm{X}_{1}=$ ${ }_{7}^{13} \mathrm{~N} ; \mathrm{X}_{2}={ }_{6}^{13} \mathrm{C} ; \mathrm{X}_{3}={ }_{7}^{14} \mathrm{~N} ; \mathrm{X}_{4}={ }_{8}^{15} 0 ; \mathrm{X}_{5}={ }_{7}^{15} \mathrm{~N} ; \mathrm{X}_{6}={ }_{6}^{12} \mathrm{C} ;$ (b) sum: $4{ }_{1}^{1} \mathrm{p} \rightarrow 2{ }_{+1}^{0} \mathrm{e}+{ }_{2}^{4} \mathrm{He} 46$ (a) 4.3333×10^{6} kg / s; (b) 7.3×10^{15} y $478.97 \times 10^{13} \mathrm{~J} ; 1.8$ million times greater 48 (a) 172800 kg ; (b) 4.84×10^{14} kg 49 Half life $=2.5$ days 50 Make alloy of $\mathrm{Au}-198$ with Al and make a saucepan. Use this for cooking and scan brain of patient 51 Number of particles in $10 \mathrm{~s}=3.7 \times 10^{14}$; energy $=74 \mathrm{~J}$; dose $=0.74 \mathrm{~J}$; absorbed dose $=0.011$ Gy $52{ }_{92}^{238} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{92}^{239} \mathrm{U}{ }_{92}^{239} \mathrm{U} \rightarrow{ }_{93}^{239} \mathrm{~Np}+{ }_{-1} \mathrm{e}{ }_{93}^{239} \mathrm{U} \rightarrow{ }_{94}^{239} \mathrm{Pu}+{ }_{-1}^{0} \mathrm{e}$.

Chapter 29

1 Electromagnetic force acts on electrons, Strong and weak nuclear forces act on nucleons, whereas the gravitational force acts on all matter. Gravity has the biggest range and the weak nuclear force has the smallest range $2 \mathrm{E}=2.85 \times 10^{-19} \mathrm{~J}, \lambda=697 \mathrm{~nm}$ (red) 3 Violet photons have greater energy and shorter wavelengths than red photons $4 \mathrm{~W}=3.3 \times 10^{-19} \mathrm{~J}, v=6.7 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} 5253 \mathrm{~nm}$ ultraviolet photons 8 Lyman series of ultraviolet photons: $122 \mathrm{~nm}, 103 \mathrm{~nm}, 98 \mathrm{~nm} 10760 \mathrm{~nm} 119.7 \times 10^{-10} \mathrm{~m} 12 \mathrm{An}$ electron's position around the nucleus can only be stated with a certain probability 13 Under conditions applying to the sub-atomic domain $173.62 \times 10^{-19} \mathrm{~J}=2.3 \mathrm{eV} 18$ (a) 500 nm (green); (b) $3.98 \times 10^{-19} \mathrm{~J}$; (c) $1.66 \times 10^{-19} \mathrm{~J}$; (d) $2.32 \times 10^{-19} \mathrm{~J}$; (e) $7.1 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} 193.0 \times 10^{-12} \mathrm{~m}$, order of magnitude equivalent 20 (a) $2.03 \times 10^{-18} \mathrm{~J}$; (b) $2.17 \times 10^{-18} \mathrm{~J}$; (c) $3.14 \times 10^{15} \mathrm{~Hz} 211.64 \times 10^{-13} \mathrm{~J}$ 22 (a) leptons, β decay; (b) nucleons, hadrons; (c) all matter $281.69 \times 10^{-27} \mathrm{~kg} 29 x=0.6 \mathrm{eV}, \mathrm{y}=$ $0.8 \mathrm{eV} 304.5 \times 10^{-11} \mathrm{~m} 31$ (a) $8.16 \times 10^{-19} \mathrm{~J}$; (b) $3.36 \times 10^{-19} \mathrm{~J}$ and $4.96 \times 10^{-19} \mathrm{~J}$; (c) $6.2 \times 10^{-20} \mathrm{~J}$

Chapter 30

$10.54 \mathrm{c} 27.8 \times 10^{-9} \mathrm{~s} 3$ (a) 0.06 c; (b) $2.85 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$; (c) $2.8 \times 10^{14} \mathrm{~km}$; (d) 317 ly 4 still 40.0 m $50.97 c 6$ (a) 5.44 y ; (b) 3.26 y ; (c) 2.61 ly 7 (a) 0.40 c; (b) $0.909 \mathrm{c} 80.54 \mathrm{c} 90.96 \mathrm{c} 104.9 \times 10^{-28}$ $\mathrm{kg} 110.0003 \mathrm{~kg} 127.1 \times 10^{-16} \mathrm{~J} 133.3 \times 10^{-13} \mathrm{~J} 14$ on the car 151.0 c 160.87 c 17 (a) 0.867 c ; (b) $1.1 \times 10^{-7} \mathrm{~s} 18$ Not perceptibly 19181.4 m 200.866 c 2114.4 ly 22 (a) 0.447 c ; (b) 0.966 c 23 c 240.866 c 25 (a) 0.999999218 c ; (b) 1.875 m 26 (a) $9.0 \times 10^{7} \mathrm{~J}$; (b) $9.0 \times 10^{5} \mathrm{~kg} 27$ To you nothing would change. To observers on Earth, mass would increase and any length in the direction of motion would decrease 28 (a), (b), (c), (g) dependent; (d), (e), (f) independent 29 yes 300.0153 m 31 (a) 8.92 m long, no change to height; (b) 13 s ; (c) v is the same (0.760 c) 320.8 c 33 (a) 9.336 ly; (b) 21.0 years 34 (a) $5.9 \times 10^{19} \mathrm{~J}$; (b) $4.7 \% 35$ for example: 70.7 kg at 0.9999 c 36 his car 5.90 m ; your car 6.25 m 37 (a) 5.28 y ; (b) 3.168 y ; (c) 2.535 ly 39 (a) 0.51 MeV (b) $1.64 \times 10^{-13} \mathrm{~J}$ (c) 0.94 c

Chapter 31

1 (a) $1.6 \times 10^{3} \Omega$; (b) $3.1 \times 10^{3} \Omega$; (c) 3.2 mA ; (d) $31^{0} 2$ (a) 356 Hz ; (b) 0.33 A ; (c) $V_{\mathrm{R}}=50 \mathrm{~V}, V_{\mathrm{C}}=$ $+74 \mathrm{~V}, V_{\mathrm{L}}=-74 \mathrm{~V}$; (d) 16.5 W ; (e) 1.53560Ω nearest, input voltage $=12 \mathrm{~V} 4$ voltage divider bias 5 $R_{\mathrm{E}}=100 \Omega, R_{\mathrm{C}}=360 \Omega, R_{1}=22 \mathrm{k} \Omega, R_{2}=3.9 \mathrm{k} \Omega, C_{1}=1 \mu \mathrm{~F}, \mathrm{C}_{2}=47 \mu \mathrm{~F} 8$ (a) OR; (b) AND; (c) NOR; (d) 3 input AND; (e) NOT 11 (a) 660Ω; (b) 810Ω; (c) 7.4 mA ; (d) $55^{\circ} 13 R_{\mathrm{E}}=130 \Omega, R_{\mathrm{C}}=560 \Omega$, $R_{1}=33 \mathrm{k} \Omega, R_{2}=5.6 \mathrm{k} \Omega, C_{1}=10 \mathrm{uF}, C_{2}=47 \mathrm{uF} A_{\mathrm{V}}=5015$ (b) $I_{\mathrm{P}}=12 \mathrm{~mA} 17$ Component listing is LDR, LED, single pole switch, variable resistor, inverter gate, OR gate, resistor, connecting wires 18 (a) $Z_{\mathrm{AB}}=42.1 \Omega$; (b) $Z=53 \Omega$; (c) $I_{\mathrm{RMS}}=0.1 \mathrm{~A}$; (d) $V_{\mathrm{AB}}=4.2 \mathrm{~V}$

Chapter 32

$11.85 \times 10^{6} \mathrm{~m}^{2} 65 \times 10^{5} \mathrm{~J}$, at 50° reduces to $3.8 \times 10^{5} \mathrm{~J} 7330 \mathrm{~W} \mathrm{~m}^{-2}$. The northern hemisphere is in summer during August 8 Photothermal devices convert solar energy to heat (solar heater) whereas a photovoltaic device converts solar energy directly to electricity (solar cell) 11 Photovoltaic action generates its own EMF and does not require a vacuum environment as does the photoelectric effect 12 1.1 kW . Actual power output depends primarily on the solar radiation flux change with time, as controlled by such variables as cloud cover 15 (a) heat losses; (b) to obtain maximum power to weight ratio; (c) ratio of energy output to energy input is 0.95 ; (d) 18.5 A 180 pen circuit voltage (no load) is 20 V DC, whereas at maximum power transfer the output voltage is 12 V DC 19 (a) Combined reading for Friday is incorrect 20 (a) 228 MJ; (b) 148 MJ; (c) 133 MJ 21 (a) 34.3 MJ; (b) $25^{\circ} \mathrm{C} 22$ Bracket length is 250 mm

Chapter 33

$2 \lambda=5.2 \times 10^{-12} \mathrm{~m} 3$ Magnetic deflecting coils 5 Roentgen, Ruska, Rohrer, Donald, Hounsfield and Damadian 6 Diagnostic ultrasound; fatty tissue images dark grey while lymphoma images light grey 8 Radioisotopes: ${ }^{99 \mathrm{~mm}} \mathrm{Tc}$, gamma emitter, reactor; ${ }^{201} \mathrm{Tl}, \mathrm{X}$ and gamma emitter, cyclotron; ${ }^{18} \mathrm{~F}$, gamma emitter, cyclotron 91.8 mSv , subjected to gamma radiation that is about the same as the yearly background dose 10 It is probably a metallic object 12 MRI depends on RF radiation emitted by hydrogen 15 Highest dosage - lumbar spine film, lowest dosage - chest AP film 17 Alpha particle's mass is considerably higher, hence more damage ability

